Skip to main content
Log in

Fast SPH simulation for gaseous fluids

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents a fast smoothed particle hydro-dynamics (SPH) simulation approach for gaseous fluids. Unlike previous SPH gas simulators, which solve the transparent air flow in a fixed simulation domain, the proposed approach directly solves the visible gas without involving the transparent air. By compensating the density and force calculation for the visible gas particles, we completely avoid the need of computational cost on ambient air particles in previous approaches. This allows the computational resources to be exclusively focused on the visible gas, leading to significant performance improvement of SPH gas simulation. The proposed approach is at least ten times faster than the standard SPH gas simulation strategy and is able to reduce the total particle number by 25–400 times in large open scenes. The proposed approach also enables fast SPH simulation of complex scenes involving liquid–gas transition, such as boiling and evaporation. A particle splitting and merging scheme is proposed to handle the degraded resolution in liquid–gas phase transition. Various examples are provided to demonstrate the effectiveness and efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively sampled particle fluids. In: ACM Transactions on Graphics (TOG), vol. 26, p. 48. ACM (2007)

  2. Angelidis, A., Neyret, F., Singh, K., Nowrouzezahrai, D.: A controllable, fast and stable basis for vortex based smoke simulation. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on computer animation, SCA ’06, pp. 25–32. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2006). http://dl.acm.org/citation.cfm?id=1218064.1218068

  3. Bender, J., Erleben, K., Teschner, M., et al.: Boundary handling and adaptive time-stepping for pcisph. In: Workshop on virtual reality interaction and physical simulation VRIPHYS (2010)

  4. Boyd, L., Bridson, R.: Multiflip for energetic two-phase fluid simulation. ACM Trans. Graph. 31(2), 16 (2012)

    Article  Google Scholar 

  5. Brochu, T., Keeler, T., Bridson, R.: Linear-time smoke animation with vortex sheet meshes. In: Lee, J., Kry, P.G. (eds.) Symposium on Computer Animation, pp. 87–95. Eurographics Association (2012)

  6. Cleary, P.W.: Modelling confined multi-material heat and mass flows using SPH. Appl. Math. Model. 22(12), 981–993 (1998). doi:10.1016/S0307-904X(98)10031-8

    Article  Google Scholar 

  7. Colagrossi, A., Landrini, M.: Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191(2), 448–475 (2003)

    Article  MATH  Google Scholar 

  8. Desbrun, M., Cani, M.P.: Space-time adaptive simulation of highly deformable substances. Rapport de recherche RR-3829, INRIA (1999). http://hal.inria.fr/inria-00072829

  9. Feldman, J., Bonet, J.: Dynamic refinement and boundary contact forces in sph with applications in fluid flow problems. Int. J. Numer. Methods Eng. 72(3), 295–324 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, Y., Li, C.F., Hu, S.M., Barsky, B.A.: Simulating gaseous fluids with low and high speeds. Comput. Graph. Forum 28(7), 1845–1852 (2009). doi:10.1111/j.1467-8659.2009.01562.x

    Article  Google Scholar 

  11. Gao, Y., Li, C.F., Ren, B., Hu, S.M.: View-dependent multiscale fluid simulation. Vis. Comput. Graph. IEEE Trans. 19(2), 178–188 (2013). doi:10.1109/TVCG.2012.117

    Article  Google Scholar 

  12. Gerszewski, D., Bargteil, A.W.: Physics-based animation of large-scale splashing liquids. ACM Trans. Graph. 32(6), 185:1–185:6 (2013)

    Article  Google Scholar 

  13. Hong, W., House, D.H., Keyser, J.: Adaptive particles for incompressible fluid simulation. Vis. Comput. 24(7–9), 535–543 (2008)

    Article  Google Scholar 

  14. Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., Teschner, M.: Implicit incompressible sph. IEEE Trans. Vis. Comput. Graph. 20(3), 426–435 (2014). doi:10.1109/TVCG.2013.105

    Article  Google Scholar 

  15. Keiser, R., Adams, B., Dutre, P., Guibas, L.J., Pauly, M.: Multiresolution particle-based fluids. ETH Zurich, NAkinci (2006)

  16. Kim, S.T., Hong, J.M.: Visual simulation of turbulent fluids using mls interpolation profiles. Vis. Comput. 29(12), 1293–1302 (2013)

    Article  Google Scholar 

  17. Li, X., Liu, L., Wu, W., Liu, X., Wu, E.: Dynamic bfecc characteristic mapping method for fluid simulations. Vis. Comput. 30(6–8), 787–796 (2014). doi:10.1007/s00371-014-0969-7

    Article  Google Scholar 

  18. Macklin, M., Müller, M., Chentanez, N., Kim, T.Y.: Unified particle physics for real-time applications. ACM Trans. Graph. (TOG) 33(4), 104 (2014)

    Article  Google Scholar 

  19. Monaghan, J.J.: Simulating free surface flows with sph. J. Comput. Phys. 110(2), 399–406 (1994)

    Article  MATH  Google Scholar 

  20. Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on computer animation, SCA ’03, pp. 154–159. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2003). http://dl.acm.org/citation.cfm?id=846276.846298

  21. Müller, M., Schirm, S., Teschner, M., Heidelberger, B., Gross, M.: Interaction of fluids with deformable solids: research articles. Comput. Animat. Virtual Worlds 15(3–4), 159–171 (2004). doi:10.1002/cav.v15:3/4

    Article  Google Scholar 

  22. Müller M., Solenthaler, B., Keiser, R., Gross, M.: Particle-based fluid-fluid interaction. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on computer animation, SCA ’05, pp. 237–244. ACM, New York, NY, USA (2005). doi:10.1145/1073368.1073402

  23. Orthmann, J., Kolb, A.: Temporal blending for adaptive sph. In: Computer Graphics Forum, vol. 31, pp. 2436–2449. Wiley Online Library (2012)

  24. Pfaff, T., Thuerey, N., Gross, M.: Lagrangian vortex sheets for animating fluids. ACM Trans. Graph. 31(4), 112:1–112:8 (2012). doi:10.1145/2185520.2185608

    Article  Google Scholar 

  25. Schechter, H., Bridson, R.: Ghost sph for animating water. ACM Trans. Graph. (TOG) 31(4), 61 (2012)

    Article  Google Scholar 

  26. Solenthaler, B., Gross, M.: Two-scale particle simulation. In: ACM Transactions on Graphics (TOG), vol. 30, p. 81. ACM (2011)

  27. Solenthaler, B., Pajarola, R.: Density contrast sph interfaces. In: Proceedings of the 2008 ACM SIGGRAPH/Eurographics symposium on computer animation, SCA ’08, pp. 211–218. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2008). http://dl.acm.org/citation.cfm?id=1632592.1632623

  28. Yan, H., Wang, Z., He, J., Chen, X., Wang, C., Peng, Q.: Real-time fluid simulation with adaptive sph. Comput. Animat. Virtual Worlds 20(2–3), 417–426 (2009)

    Article  Google Scholar 

  29. Zhu, B., Yang, X., Fan, Y.: Creating and preserving vortical details in sph fluid. Comput. Graph. Forum 29(7), 2207–2214 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their constructive comments, and Prof. Jianjun Zhang and Prof. Jian Chang for their suggestions. This work is supported by the National Basic Research Project of China (Project Number 2011CB302205), the Natural Science Foundation of China (Project Number 61120106007) and the National High Technology Research and Development Program of China (Project Number 2012AA011503). The authors would also like to acknowledge the financial support provided by the National Science Foundation (NSF IIS-1320644) and UNC Carolina Development Foundation, and Sêr Cymru National Research Network in Advanced Engineering and Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Ren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 16519 KB)

Appendix A: Derivation of Eqs. (7–8)

Appendix A: Derivation of Eqs. (78)

This appendix shows the detailed derivations of Eqs. (7) and (8). Since densities in adjacent particles are assumed to change gradually in the gas simulations, we can further consider that for a particle \(i\), the densities of its neighboring particles \(\rho _{i,j}\) are corrected with the same proportion as itself and in a similar form as Eq. (6):

$$\begin{aligned} \rho _{i,j}=\frac{\bar{\rho }_{i,j}}{1-V W_{ik}} \end{aligned}$$
(27)

Here we want to determine the value of the scalar \(V\), which for a given particle \(i\) does not vary with adjacent particle \(j\). Using the form in Eq. (27), Eq. (4) can be rewritten as

$$\begin{aligned} 0=(1-V W_{ik})\sum _j\frac{m_j}{\bar{\rho }_j}\nabla W_{ij} + \frac{m_k}{\rho _i}\nabla W_{ik} \end{aligned}$$
(28)

Utilizing \(V_0\) in Eq. (5), the above equation can be further rewritten as

$$\begin{aligned} m_k=(1-V W_{ik})V_0\rho _i \end{aligned}$$
(29)

Note that it has been assumed in the first place that the final correction form should be in the form of Eq. (27), which is equivalent to requiring \(m_k=V\rho _i\). Comparing this with Eq. (29), the following equation can be obtained:

$$\begin{aligned} (1-V W_{ik})V_0 = V \end{aligned}$$
(30)

Solving Eq. (30) yields

$$\begin{aligned} V=\frac{V_0}{1+V_0W_{ik}} \end{aligned}$$
(31)

Substituting Eq. (31) into Eqs. (27) and (29) leads to Eqs. (78).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, B., Yan, X., Yang, T. et al. Fast SPH simulation for gaseous fluids. Vis Comput 32, 523–534 (2016). https://doi.org/10.1007/s00371-015-1086-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1086-y

Keywords

Navigation