Skip to main content
Log in

Efficient multi-view ray tracing using edge detection and shader reuse

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Stereoscopic rendering and 3D stereo displays are quickly becoming mainstream. The natural extension is autostereoscopic multi-view displays which, by the use of parallax barriers or lenticular lenses, can accommodate many simultaneous viewers without the need for active or passive glasses. As these displays, for the foreseeable future, will support only a rather limited number of views, there is a need for high-quality interperspective antialiasing. We present a specialized algorithm for efficient multi-view image generation from a camera line using ray tracing, which builds on previous methods for multi-dimensional adaptive sampling and reconstruction of light fields. We introduce multi-view silhouette edges to detect sharp geometrical discontinuities in the radiance function. These are used to significantly improve the quality of the reconstruction. In addition, we exploit shader coherence by computing analytical visibility between shading points and the camera line, and by sharing shading computations over the camera line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adelson, S., Hodges, L.F.: Stereoscopic ray-tracing. Vis. Comput. 10(3), 127–144 (1993)

    Article  Google Scholar 

  2. Apodaca, A., Gritz, L.: Advanced RenderMan: Creating CGI for Motion Pictures. Morgan Kaufmann, San Mateo (2000)

    Google Scholar 

  3. Badt, S.J.: Two algorithms for taking advantage of temporal coherence in ray tracing. Vis. Comput. 4(3), 123–132 (1988)

    Article  MATH  Google Scholar 

  4. Bala, K., Walter, B., Greenberg, D.P.: Combining edges and points for interactive high-quality rendering. ACM Trans. Graph. 22, 631–640 (2003)

    Article  Google Scholar 

  5. Chai, J.X., Tong, X., Chan, S.C., Shum, H.Y.: Plenoptic sampling. In: Proceedings of ACM SIGGRAPH, pp. 307–318 (2000)

    Google Scholar 

  6. Chen, S.E., Williams, L.: View interpolation for image synthesis. In: Proceedings of ACM SIGGRAPH, pp. 279–288 (1993)

    Google Scholar 

  7. Crow, F.: Shadow algorithms for computer graphics. In: Computer Graphics, Proceedings of ACM SIGGRAPH, pp. 242–248 (1977)

    Google Scholar 

  8. Drettakis, G., Fiume, E.: A fast shadow algorithm for area light sources using backprojection. In: Proceedings of ACM SIGGRAPH, pp. 223–230 (1994)

    Chapter  Google Scholar 

  9. Egan, K., Tseng, Y.T., Holzschuch, N., Durand, F., Ramamoorthi, R.: Frequency analysis and sheared reconstruction for rendering motion blur. ACM Trans. Graph. 28(3), 93 (2009)

    Article  Google Scholar 

  10. Ezell, J.D., Hodges, L.F.: Some preliminary results on using spatial locality to speed up ray tracing of stereoscopic images. In: Stereoscopic Displays and Applications. Proceedings of SPIE, vol. 1256, pp. 298–306 (1990)

    Google Scholar 

  11. Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: Proceedings of ACM SIGGRAPH, pp. 43–54 (1996)

    Google Scholar 

  12. Hachisuka, T., Jarosz, W., Weistroffer, R., Dale, K.G.H., Zwicker, M., Jensen, H.: Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph. 27(3), 33 (2008)

    Article  Google Scholar 

  13. Halle, M.: Holographic stereograms as discrete imaging systems. In: Practical Holography VIII. Proceedings of SPIE, vol. 2176, pp. 73–84 (1994)

    Google Scholar 

  14. Halle, M.W.: Multiple viewpoint rendering for three-dimensional displays. Ph.D. thesis, MIT (1997)

  15. Hasselgren, J., Akenine-Möller, T.: An efficient multi-view rasterization architecture. In: Eurographics Symposium on Rendering, pp. 61–72 (2006)

    Google Scholar 

  16. Havran, V., Damez, C., Myszkowski, K., Seidel, H.P.: An efficient spatio-temporal architecture for animation rendering. In: ACM SIGGRAPH Sketches & Applications (2003)

    Google Scholar 

  17. Igehy, H.: Tracing ray differentials. In: Proceedings of ACM SIGGRAPH, pp. 179–186 (1999)

    Google Scholar 

  18. Isaksen, A., McMillan, L., Gortler, S.: Dynamically reparameterized light fields. In: Proceedings of ACM SIGGRAPH, pp. 297–306 (2000)

    Google Scholar 

  19. Javidi, B., Okano, F.: Three-Dimensional Television, Video, and Display Technologies. Springer, Berlin (2002)

    Google Scholar 

  20. Kartch, D.: Efficient rendering and compression for full-parallax computer-generated holographic stereograms. Ph.D. thesis, Cornell University (2000)

  21. Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings of ACM SIGGRAPH, pp. 13–42 (1996)

    Google Scholar 

  22. Mark, W.R., McMillan, L., Bishop, G.: Post-rendering 3D warping. In: Symposium on Interactive 3D Graphics, pp. 7–16 (1997)

    Chapter  Google Scholar 

  23. Max, N., Ohsaki, K.: Rendering trees from precomputed Z-buffer views. In: Eurographics Rendering Workshop, pp. 45–54 (1995)

    Google Scholar 

  24. Pharr, M., Humphreys, G.: Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann, San Mateo (2004)

    Google Scholar 

  25. Ramachandra, V., Zwicker, M., Nguyen, T.: Display dependent coding for 3D video on automultiscopic displays. In: IEEE International Conference on Image Processing, pp. 2436–2439 (2008)

    Chapter  Google Scholar 

  26. Shade, J., Gortler, S., He, L.w., Szeliski, R.: Layered depth images. In: Proceedings of ACM SIGGRAPH, pp. 231–242 (1998)

    Google Scholar 

  27. Stewart, J., Yu, J., Gortler, S., McMillan, L.: A new reconstruction filter for undersampled light fields. In: Eurographics Symposium on Rendering, pp. 150–156 (2003)

    Google Scholar 

  28. Sung, K., Pearce, A., Wang, C.: Spatial-temporal antialiasing. IEEE Trans. Vis. Comput. Graph. 8(2), 144–153 (2002)

    Article  Google Scholar 

  29. Zhang, C., Chen, T.: Generalized plenoptic sampling. Tech. Rep. AMP01-06, Carnegie Mellon (2001)

  30. Zhang, C., Chen, T.: Spectral analysis for sampling image-based rendering data. IEEE Trans. Circuits Syst. Video Technol. 13(11), 1038–1050 (2003)

    Article  Google Scholar 

  31. Zwicker, M., Matusik, W., Durand, F., Pfister, H.: Antialiasing for automultiscopic 3D displays. In: Eurographics Symposium on Rendering, pp. 73–82 (2006)

    Google Scholar 

  32. Zwicker, M., Yea, S., Vetro, A., Forlines, C., Matusik, W., Pfister, H.: Display pre-filtering for multi-view video compression. In: International Conference on Multimedia (ACM Multimedia), pp. 1046–1053 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Andersson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, M., Johnsson, B., Munkberg, J. et al. Efficient multi-view ray tracing using edge detection and shader reuse. Vis Comput 27, 665–676 (2011). https://doi.org/10.1007/s00371-011-0560-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0560-4

Keywords

Navigation