Skip to main content
Log in

Fractal dimension based neurofeedback in serious games

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

EEG-based technology is widely used in serious game design since more wireless headsets that meet consumer criteria for wearability, price, portability, and ease-of-use are coming to the market. Originally, such technologies were mostly used in different medical applications, Brain Computer Interfaces (BCI) and neurofeedback games. The algorithms adopted in such applications are mainly based on power spectrum analysis, which may not be fully revealing the nonlinear complexity of the brain activities. In this paper, we first review neurofeedback games, EEG processing methods, and algorithms, and then propose a new nonlinear fractal dimension based approach to neurofeedback implementation targeting EEG-based serious games design. Only one channel is used in the proposed concentration quantification algorithm. The developed method was compared with other methods used for the concentration level recognition in neurofeedback games. The result analysis demonstrated an efficiency of the proposed approach. We designed and implemented new EEG-based 2D and 3D neurofeedback games that make the process of brain training more enjoyable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Emotiv: URL http://www.emotiv.com

  2. Panda3d: URL http://www.panda3d.org

  3. Project “personalized digital media experience”: URL http://www3.ntu.edu.sg/home/EOSourina/projects.html

  4. Simple directmedia layer: URL http://www.libsdl.org

  5. Unreal engine: URL http://www.udk.com

  6. Birbaumer, N.: Slow cortical potentials: plasticity, operant control, and behavioral effects. Neuroscientist 5(2), 74–78 (1999)

    Article  Google Scholar 

  7. Block, A., Von Bloh, W., Schellnhuber, H.J.: Efficient box-counting determination of generalized fractal dimensions. Phys. Rev. A 42(4), 1869–1874 (1990)

    Article  MathSciNet  Google Scholar 

  8. Clarke, A.R., Barry, R.J., McCarthy, R., Selikowitz, M.: Electroencephalogram differences in two subtypes of attention-deficit/hyperactivity disorder. Psychophysiology 38(2), 212–221 (2001)

    Article  Google Scholar 

  9. Coben, R., Linden, M., Myers, T.E.: Neurofeedback for autistic spectrum disorder: a review of the literature. Appl. Psychophysiol. Biofeedback 35(1), 83–105 (2010)

    Article  Google Scholar 

  10. Cowan, J.D., Markham, L.: EEG biofeedback for the attention problems of autism—a case study. Biofeedback Self-Regul. 19(3), 287–287 (1994)

    Google Scholar 

  11. Demos, J.N.: Getting Started with Neurofeedback. WW Norton & Company, New York (2005)

    Google Scholar 

  12. Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  13. Fuchs, T., Birbaumer, N., Lutzenberger, W., Gruzelier, J.H., Kaiser, J.: Neurofeedback treatment for attention-deficit/hyperactivity disorder in children: a comparison with methylphenidate. Appl. Psychophysiol. Biofeedback 28(1), 1–12 (2003)

    Article  Google Scholar 

  14. Gevensleben, H., Holl, B., Albrecht, B., Schlamp, D., Kratz, O., Studer, P., Wangler, S., Rothenberger, A., Moll, G.H., Heinrich, H.: Distinct EEG effects related to neurofeedback training in children with ADHD: a randomized controlled trial. Int. J. Psychophysiol. 74(2), 149–157 (2009)

    Article  Google Scholar 

  15. Gevensleben, H., Holl, B., Albrecht, B., Vogel, C., Schlamp, D., Kratz, O., Studer, P., Rothenberger, A., Moll, G.H., Heinrich, H.: Is neurofeedback an efficacious treatment for ADHD? A randomised controlled clinical trial. J. Child Psychol. Psychiatry Allied Discipl. 50(7), 780–789 (2009)

    Article  Google Scholar 

  16. Hammond, D.C.: What is neurofeedback? J. Neurother. 10(4), 25–36 (2006)

    Article  Google Scholar 

  17. Hanslmayr, S., Sauseng, P., Doppelmayr, M., Schabus, M., Klimesch, W.: Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Appl. Psychophysiol. Biofeedback 30(1), 1–10 (2005)

    Article  Google Scholar 

  18. Higuchi, T.: Approach to an irregular time series on the basis of the fractal theory. Physica D 31(2), 277–283 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  19. Homan, R.W., Herman, J., Purdy, P.: Cerebral location of international 10–20 system electrode placement. Electroencephalogr. Clin. Neurophysiol. 66(4), 376–382 (1987)

    Article  Google Scholar 

  20. Kerson, C., Sherman, R.A., Kozlowski, G.P.: Alpha suppression and symmetry training for generalized anxiety symptoms. J. Neurother. 13(3), 146–155 (2009)

    Article  Google Scholar 

  21. Kinsner, W.: A unified approach to fractal dimensions. In: Proc. ICCI 2005: Fourth IEEE International Conference on Cognitive Informatics, pp. 58–72 (2005)

    Google Scholar 

  22. Kouijzer, M.E.J., van Schie, H.T., de Moor, J.M.H., Gerrits, B.J.L., Buitelaar, J.K.: Neurofeedback treatment in autism, preliminary findings in behavioral, cognitive, and neurophysiological functioning. Res. Autism Spectr. Disord. 4(3), 386–399 (2010)

    Article  Google Scholar 

  23. Kulish, V., Sourin, A., Sourina, O.: Analysis and visualization of human electroencephalograms seen as fractal time series. J. Mech. Med. Biol. 6(2), 175–188 (2006)

    Article  Google Scholar 

  24. Kulish, V., Sourin, A., Sourina, O.: Human electroencephalograms seen as fractal time series: mathematical analysis and visualization. Comput. Biol. Med. 36(3), 291–302 (2006)

    Article  Google Scholar 

  25. Lécuyer, A., Lotte, F., Reilly, R.B., Leeb, R., Hirose, M., Slater, M.: Brain-computer interfaces, virtual reality, and videogames. Computer 41(10), 66–72 (2008)

    Article  Google Scholar 

  26. Li, Z.H., Coles, C.D., Lynch, M.E., Ma, X.Y., Peltier, S., Hu, X.P.: Occipital-temporal reduction and sustained visual attention deficit in prenatal alcohol exposed adults. Brain Imaging Behav. 2(1), 39–48 (2008)

    Article  Google Scholar 

  27. Liu, Y., Sourina, O., Nguyen, M.K.: Real-time EEG-based human emotion recognition and visualization. In: Proc. 2010 Int. Conf. on Cyberworlds, pp. 262–269 (2010)

    Chapter  Google Scholar 

  28. Lubar, J.F., Swartwood, M.O., Swartwood, J.N., O’Donnell, P.H.: Evaluation of the effectiveness of EEG neurofeedback training for ADHD in a clinical setting as measured by changes in t.o.v.a. scores, behavioral ratings, and Wisc-r performance. Biofeedback Self-Regul. 20(1), 83–99 (1995)

    Article  Google Scholar 

  29. Lutsyuk, N.V., Éismont, E.V., Pavlenko, V.B.: Modulation of attention in healthy children using a course of EEG-feedback sessions. Neurophysiology 38(5–6), 389–395 (2006)

    Article  Google Scholar 

  30. Murray, S.O., Wojciulik, E.: Attention increases neural selectivity in the human lateral occipital complex. Nat. Neurosci. 7(1), 70–74 (2004)

    Article  Google Scholar 

  31. Nunez, P.L., Srinivasan, R.: Electric Fields of the Brain. Oxford University Press, New York (2006)

    Book  Google Scholar 

  32. Pop-Jordanov, J., Pop-Jordanova, N.: Neurophysical substrates of arousal and attention. Cogn. Process. 10(1), 71–79 (2009)

    Article  Google Scholar 

  33. Rebsamen, B., Burdet, E., Guan, C., Zhang, H., Teo, C.L., Zeng, Q., Ang, M., Laugier, C.: A brain-controlled wheelchair based on p300 and path guidance. In: Proc. 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 1101–1106 (2006)

    Chapter  Google Scholar 

  34. Rebsamen, B., Teo, C.L., Zeng, Q., Ang, M.H. Jr, Burdet, E., Guan, C., Zhang, H., Laugier, C.: Controlling a wheelchair indoors using thought. IEEE Intell. Syst. 22(2), 18–24 (2007)

    Article  Google Scholar 

  35. Saxby, E., Peniston, E.G.: Alpha-theta brainwave neurofeedback training: an effective treatment for male and female alcoholics with depressive symptoms. J. Clin. Psychol. 51(5), 685–693 (1995)

    Article  Google Scholar 

  36. Sokhadze, T.M., Cannon, R.L., Trudeau, D.L.: EEG biofeedback as a treatment for substance use disorders: review, rating of efficacy, and recommendations for further research. Appl. Psychophysiol. Biofeedback 33(1), 1–28 (2008)

    Article  Google Scholar 

  37. Sourina, O., Kulish, V., Sourin, A.: Novel tools for quantification of brain responses to music stimuli. In: Proc. 13th International Conference on Biomedical Engineering, pp. 411–414 (2009)

    Chapter  Google Scholar 

  38. Sourina, O., Sourin, A., Kulish, V., Gagalowicz, A., Philips, W.: EEG data driven animation and its application. In: Proc. Computer Vision/Computer Graphics Collaboration Techniques, pp. 380–388 (2009)

    Chapter  Google Scholar 

  39. Thompson, L., Thompson, M., Reid, A.: Neurofeedback outcomes in clients with asperger’s syndrome. Appl. Psychophysiol. Biofeedback 35(1), 63–81 (2010)

    Article  Google Scholar 

  40. Vernon, D., Egner, T., Cooper, N., Compton, T., Neilands, C., Sheri, A., Gruzelier, J.: The effect of training distinct neurofeedback protocols on aspects of cognitive performance. Int. J. Psychophysiol. 47(1), 75–85 (2003)

    Article  Google Scholar 

  41. Wang, Q., Sourina, O., Nguyen, M.K.: EEG-based “serious” games design for medical applications. In: Proc. 2010 Int. Conf. on Cyberworlds, pp. 270–276 (2010)

    Chapter  Google Scholar 

  42. Wang, Q., Sourina, O., Nguyen, M.K.: Fractal dimension based algorithm for neurofeedback games. In: Proc. CGI 2010, p. SP25 (2010)

    Google Scholar 

  43. Ward, J.: What is a game engine? URL http://www.gamecareerguide.com/features/529/what_is_a_game.php

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Sourina, O. & Nguyen, M.K. Fractal dimension based neurofeedback in serious games. Vis Comput 27, 299–309 (2011). https://doi.org/10.1007/s00371-011-0551-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0551-5

Keywords

Navigation