Skip to main content
Log in

3D articulated object retrieval using a graph-based representation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, a retrieval methodology for 3D articulated objects is presented that relies upon a graph-based object representation. The methodology is composed of a mesh segmentation stage which creates the Attributed Relation Graph (ARG) of the object along with a graph matching algorithm which matches two ARGs. The graph matching algorithm is based on the Earth Movers Distance (EMD) similarity measure calculated with a new ground distance assignment. The superior performance of the proposed retrieval methodology against state-of-the-art approaches is shown by extensive experimentation that comprise the application of various geometric descriptors representing the components of the 3D objects that become the node attributes of the ARGs as well as alternative mesh segmentation approaches for the extraction of the object parts. The performance evaluation is addressed in both qualitative and quantitative terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agathos, A., Pratikakis, I., Perantonis, S., Sapidis, N.: A protrusion-oriented 3D mesh segmentation. Vis. Comput. doi:10.1007/s00371-009-0383-8

  2. Agathos, A., Pratikakis, I., Perantonis, S., Sapidis, N., Azariadis, P.: 3D mesh segmentation methodologies for CAD applications. Comput.-Aided Des. Appl. 4(6), 827–841 (2007)

    Google Scholar 

  3. Ben-Chen, M., Gotsman, C.: Characterizing shape using conformal factors. In: Eurographics Workshop on 3D Object Retrieval, pp. 1–8 (2008)

  4. Biasotti, S., Marini, S., Spagnuolo, M., Falcidieno, B.: Sub-part correspondence by structural descriptors of 3D shapes. Comput.-Aided Des. 38(9), 1002–1019 (2006)

    Article  Google Scholar 

  5. Biederman, I.: Recognition-by-components: A theory of human image understanding. Psychol. Rev. 94(2), 115–147 (1987)

    Article  Google Scholar 

  6. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Topology-invariant similarity of nonrigid shapes. Int. J. Comput. Vis. 81, 281–301 (2009)

    Article  Google Scholar 

  7. Bustos, B., Keim, D., Saupe, D., Schreck, T., Vranic, D.: Automatic selection and combination of descriptors for effective 3D similarity search. In: IEEE Sixth Int. Symp. on Multimedia Software Engineering, pp. 514–521 (2004)

  8. Chen, D.Y., Tian, X.P., Shen, Y.T., Ouhyoung, M.: On visual similarity based 3D model retrieval. In: Eurographics, Computer Graphics Forum, pp. 223–232 (2003)

  9. Cornea, N., Demirci, M.F., Silver, D., Shokoufandeh, A., Dickinson, S., Kantor, P.: 3D object retrieval using many-to-many matching of curve skeletons. In: Proceedings of Shape Modeling and Applications, pp. 366–371 (2005)

  10. Funkhouser, T., Shilane, P.: Partial matching of 3D shapes with priority-driven search. In: Fourth Eurographics Symposium on Geometry Processing, pp. 131–142 (2006)

  11. Gal, R., Shamir, A., Cohen-Or, D.: Pose oblivious shape signature. IEEE Trans. Vis. Comput. Graph. 13(2), 261–271 (2007)

    Article  Google Scholar 

  12. Hilaga, M., Shinagawa, Y., Komura, T., Kunii, T.L.: Topology matching for full automatic similarity estimation of 3d. In: ACM SIGGRAPH, pp. 203–212 (2001)

  13. Hoffman, D., Richards, W.: Parts of recognition. Cognition 18, 65–96 (1984)

    Article  Google Scholar 

  14. Jain, V., Zhang, H.: A spectral approach to shape-based retrieval of articulated 3D models. Comput. Aided Des. 39(5), 398–407 (2007)

    Article  Google Scholar 

  15. Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extraction. Vis. Comput. 21(8–10), 649–658 (2005)

    Article  Google Scholar 

  16. Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. 22(3), 954–961 (2003)

    Article  Google Scholar 

  17. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 156–164 (2003)

  18. Kim, D.H., Park, I.K., Yun, I.D., Lee, S.U.: A new mpeg-7 standard: Perceptual 3D shape descriptor. In: 5th Pacific Rim Conference on Multimedia, pp. 238–245 (2004)

  19. Lin, H.S., Liao, H.M., Lin, J.: Visual salience-guided mesh decomposition. IEEE Trans. Multimedia 9(1), 46–57 (2007)

    Article  Google Scholar 

  20. Marini, S., Spagnuolo, M., Falcidieno, B.: Structural shape prototypes for the automatic classification of 3D objects. Comput. Graph. Appl. 27(4), 28–37 (2007)

    Article  Google Scholar 

  21. McGill 3D Shape Benchmark Objects with articulating parts. http://www.cim.mcgill.ca/~shape/benchMark/

  22. Ohbuchi, R., Osada, K., Furuya, T., Banno, T.: Salient local visual features for shape-based 3d model retrieval. In: IEEE Int. Conf. on Shape Modeling and Applications, pp. 93–102 (2008)

  23. Papadakis, P., Pratikakis, I., Perantonis, S., Theoharis, T.: Efficient 3D shape matching and retrieval using a concrete radialized spherical projection representation. Pattern Recogn. 40(9), 2437–2452 (2007)

    Article  MATH  Google Scholar 

  24. Papadakis, P., Pratikakis, I., Theoharis, T., Passalis, G., Perantonis, S.: 3D object retrieval using an efficient and compact hybrid shape descriptor. In: Eurographics Workshop on 3D Object Retrieval, pp. 9–16 (2008)

  25. Passalis, G., Theoharis, T., Kakadiaris, I.A.: Ptk: A novel depth buffer-based shape descriptor for three-dimensional object retrieval. Vis. Comput. 23(1), 5–14 (2007)

    Article  Google Scholar 

  26. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000). http://www.cs.duke.edu/tomasi/software/emd.htm

    Article  MATH  Google Scholar 

  27. Sundar, H., Silver, D., Gagvani, N., Dickinson, S.: Skeleton based shape matching and retrieval. In: Shape Modeling International, pp. 130–139 (2003)

  28. Tal, A., Zuckerberger, E.: Mesh retrieval by components. In: International Conference on Computer Graphics Theory and Applications, pp. 142–149 (2006)

  29. Tung, T., Schmitt, F.: The augmented multiresolution Reeb graph approach for content-based retrieval of 3D shapes. Int. J. Shape Model. 11(1), 91–120 (2005)

    Article  Google Scholar 

  30. Vranic, D.: Desire: a composite 3D-shape descriptor. In: IEEE International Conference on Multimedia and Expo, pp. 145–156 (2005)

  31. Vranic, D.V.: 3D model retrieval. PhD thesis, University of Leipzig (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Pratikakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agathos, A., Pratikakis, I., Papadakis, P. et al. 3D articulated object retrieval using a graph-based representation. Vis Comput 26, 1301–1319 (2010). https://doi.org/10.1007/s00371-010-0523-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0523-1

Keywords

Navigation