Skip to main content
Log in

Noise- and compression-robust biological features for texture classification

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Texture classification is an important aspect of many digital image processing applications such as surface inspection, content-based image retrieval, and biomedical image analysis. However, noise and compression artifacts in images cause problems for most texture analysis methods. This paper proposes the use of features based on the human visual system for texture classification using a semisupervised, hierarchical approach. The texture feature consists of responses of cells which are found in the visual cortex of higher primates. Classification experiments on different texture libraries indicate that the proposed features obtain a very high classification near 97%. In contrast to other well-established texture analysis methods, the experiments indicate that the proposed features are more robust to various levels of speckle and Gaussian noise. Furthermore, we show that the classification rate of the textures using the presented biologically inspired features is hardly affected by image compression techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aschkenasy, S.V., Muntwyler, J., van der Loo, B., Oechslin, E., Jenni, R.: Texture analysis in digitally-acquired echocardiographic images: The effect of JPEG compression and video storage. Ultrasound Med. Biol. 31(3), 361–366 (2005)

    Article  Google Scholar 

  2. Bovik, A.C., Clark, M., Geisler, W.S.: Multichannel texture analysis using localized spatial filters. IEEE Trans. Pattern Anal. Mach. Intell. 12(1), 55–73 (1990)

    Article  Google Scholar 

  3. Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover, New York (1966)

    Google Scholar 

  4. Chellappa, R., Chatterjee, S.: Classification of textures using Gaussian Markov random field. IEEE Trans. Acoust. Speech Signal Process. 33, 959–963 (1985)

    Article  MathSciNet  Google Scholar 

  5. Clark, M., Bovik, A.: Texture segmentation using Gabor modulation/demodulation. Pattern Recogn. Lett. 6, 261–267 (1987)

    Article  Google Scholar 

  6. Clausi, D.A., Jernigan, M.E.: Designing Gabor filters for optimal texture separability. Pattern Recogn. 33(11), 1835–1849 (2000)

    Article  Google Scholar 

  7. Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimization by two-dimensional visual cortical filters. J. Opt. Soc. Am. 2, 1160–1169 (1985)

    Article  Google Scholar 

  8. Fountain, S.R., Tan, T.N.: Extraction of noise robust rotation invariant texture features via multichannel filtering. In: Proceedings of the 1997 International Conference on Image Processing, vol. 3, pp. 197–200 (1997)

  9. Hall, C.F., Hall, E.L.: A nonlinear model for the spatial characteristics of the human visual system. IEEE Trans. Syst. Man Cybern. 7(3), 161–170 (1977)

    Article  Google Scholar 

  10. Iakovidis, D.K., Keramidas, E., Maroulis, D.: Fuzzy local binary patterns for ultrasound texture characterization. In: Proc. Image Analysis and Recognition, 5th International Conference (ICIAR 2008). Lecture Notes in Computer Science, vol. 5112, pp. 750–759. Springer, Berlin (2008)

    Google Scholar 

  11. Independent JPEG Group: http://www.ijg.org/

  12. Jones, J., Palmer, A.: An evaluation of the two dimensional Gabor filter model of simple receptive fields in cat striate cortex. J. Neurophysiol. 58, 1233–1258 (1987)

    Google Scholar 

  13. Kachouie, N.N., Alirezaie, J.: Optimized multichannel filter bank with flat frequency response for texture segmentation. J. Appl. Signal Process. 12, 1834–1844 (2005)

    Google Scholar 

  14. Kohonen, T.: Self-organizing Maps. Springer, Berlin (1997)

    MATH  Google Scholar 

  15. Kruizinga, P., Petkov, N.: Nonlinear operator for blob texture segmentation. In: Cetin, A.S., et al. (eds.) Proc. NSIP’99, IEEE Workshop on Nonlinear Signal Processing, vol. 2, pp. 881–885 (1999)

  16. Lourens, T., Barakova, E., Okuno, H.G., Tsujino, H.: A computational model of monkey cortical grating cells. Biol. Cybern. 92(1), 61–70 (2005)

    Article  MATH  Google Scholar 

  17. Ma, H., Doermann, D.S.: Font identification using the grating cell texture operator. In: Proceedings of Document Recognition and Retrieval XII, pp. 148–156 (2005)

  18. Martens, G., Poppe, C., Van de Walle, R.: Enhanced grating cell features for unsupervised texture segmentation. In: Performance Evaluation for Computer Vision: 31st AAPR/OAGM Workshop 2007, Osterreichische Computer Gesellschaft, Performance Evaluation for Computer Vision, pp. 9–16 (2007)

  19. Martens, G., Poppe, C., Lambert, P., Van de Walle, R.: Unsupervised texture segmentation and labeling using biologically inspired features. In: Proceedings of the 2008 IEEE 10th Workshop on Multimedia Signal Processing, pp. 159–164. IEEE Signal Processing Society (2008)

  20. Matlab Image Processing Toolbox 5.1, see: http://www.mathworks.com/products/image/

  21. MeasTex Image Texture Database and Test Suite, Version 1.1, see: http://www.texturesynthesis.com/meastex/meastex.html

  22. Murino, V., Ottonello, C., Pagnan, S.: Noisy texture classification: A higher-order statistics approach. Pattern Recogn. 31(4), 383–393 (1998)

    Article  Google Scholar 

  23. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  24. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture analysis with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  25. Picard, R.W., Minka, T.P.: Vision texture for annotation. Multimedia Syst. 3(1), 3–14 (1995)

    Article  Google Scholar 

  26. Pollen, D.A., Ronner, S.F.: Visual cortical neurons as localized spatial frequency filters. IEEE Trans. Syst. Man Cybern. 13(5), 907–916 (1983)

    Google Scholar 

  27. Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: Self-organizing map in Matlab: The SOM toolbox. In: Proceedings of the Matlab DSP Conference, pp. 35–40 (2000)

  28. von der Heydt, R., Peterhans, E., Dürsteler, M.R.: Periodic-pattern-selective cells in monkey visual cortex. J. Neurosci. 12(4), 1416–1434 (1992)

    Google Scholar 

  29. Zhang, G., Ma, Z.M., Cai, Z., Wang, H.: Texture analysis using modified computation model of grating cells in content-based medical image retrieval. In: Lecture Notes in Computer Science, vol. 4989, pp. 125–132. Springer, Berlin (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaëtan Martens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martens, G., Poppe, C., Lambert, P. et al. Noise- and compression-robust biological features for texture classification. Vis Comput 26, 915–922 (2010). https://doi.org/10.1007/s00371-010-0455-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0455-9

Keywords

Navigation