Skip to main content
Log in

Perceptually-motivated shape exaggeration

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Image communication would appear more efficient if the visual cases of the concerned parts can be enhanced. One way to achieve this is by local shape exaggeration in rendering. In this paper, we present an interactive scheme for controllable local shape exaggeration. Our approach achieves local, direct, and consistent appearance enhancement by modifying the surface orientation in an intuitive and globally optimized manner with sparse user-specified constraints. Compared with previous approaches, the main contribution of this paper is the introduction of adaptive exaggeration function (AEF), which is capable of modulating the extent of detail enhancement to obtain a satisfactory shape exaggeration result. The AEF model is derived based on a series of experiments. We complement our new approach with a variety of examples, user studies, and provide comparisons with recent approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gooch, B., Gooch, A.: Non-Photorealistic Rendering. A.K. Peters Ltd (2001)

  2. Guskov, I., Sweldens, W., Schroder, P.: Multiresolution signal processing for meshes. In: Proceedings of SIGGRAPH 1999, pp. 325–334 (1999)

  3. Gooch, A., Gooch, B., Shirley, P., Cohen, E.: A non-photorealistic lighting model for automatic technical illustration. In: Proceedings of SIGGRAPH ’98, 31, pp. 447–452 (1998)

  4. DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., Santella, A.: Suggestive contours for conveying shape. ACM Trans. Graph. 22(3), 848–855 (2003)

    Article  Google Scholar 

  5. Cole, F., DeCarlo, D., Finkelstein, A., Kin, K., Morley, K., Santella, A.: Directing gaze in 3D models with stylized focus. In: Eurographics Symposium on Rendering, pp. 377–387 (2006)

  6. Ritschel, T., Smith, K., Ihrke, M., Grosch, T., Myszkowski, K., Seidel, H.-P.: 3D unsharp masking for scene coherent enhancement. ACM Trans. Graph. 27(3) (2008)

  7. Lee, Y., Markosian, L., Lee, S., Hughes, J.F.: Line drawings via abstracted shading. ACM Trans. Graph. 26(3), 18:1–18:5 (2007)

    Article  Google Scholar 

  8. Kolomenkin, M., Shimshoni, I., Tal, A.: Demarcating curves for shape illustration. ACM Trans. Graph. 27(4), 157:1–157:9 (2008)

    Google Scholar 

  9. Cignoni, P., Scopigno, R., Tarini, M.: A simple normal enhancement technique for interactive non-photorealistic renderings. Comput. Graph. 25(1), 125–133 (2005)

    Article  Google Scholar 

  10. Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. ACM Trans. Graph. 22(3), 950–953 (2003)

    Article  Google Scholar 

  11. Todo, H., Anjyo, K., Baxter, W., Igarashi, T.: Locally controllable stylized shading. ACM Trans. Graph. 26(3), 17:1–17:7 (2007)

    Article  Google Scholar 

  12. Rusinkiewicz, S., Burns, M., DeCarlo, D.: Exaggerated shading for depicting shape and detail. ACM Trans. Graph. 25(3), 1199–1205 (2006)

    Article  Google Scholar 

  13. Lee, C.H., Hao, X., Varshney, A.: Geometry-dependent lighting. IEEE Trans. Vis. Comput. Graph. 12(2), 197–207 (2006)

    Article  Google Scholar 

  14. Kim, Y., Varshney, A.: Persuading visual attention through geometry. IEEE Trans. Vis. Comput. Graph. 14(4), 772–781 (2008)

    Article  Google Scholar 

  15. Kim, B.M., Rossignac, J.: GeoFilter: geometric selection of mesh filter parameters. Comput. Graph. Forum 24(3), 295–302 (2005)

    Article  Google Scholar 

  16. Eigensatz, M., Sumner, R.W., Pauly, M.: Curvature-domain shape processing. Comput. Graph. Forum 27(2), 241–250 (2008)

    Article  Google Scholar 

  17. Vergne, R., Pacanowski, R., Barla, P., Granier, X., Schlick, C.: Light warping for enhanced surface depiction. ACM Trans. Graph. 28(3) (2009)

  18. Vergne, R., Pacanowski, R., Barla, P., Granier, X., Schlick, C.: Radiance scaling for versatile surface enhancement. In: I3D ’10: Proc. Symposium on Interactive 3D graphics and games, ACM (2010)

  19. van der Maaten, L.J.P., Boon, P.J., Paijmans, J.J., Lange, A.G., Postma, E.O.: Computer vision and machine learning for archaeology. In: Proceedings of Computer Applications and Quantitative Methods in Archaeology, pp. 112–130 (2006)

  20. Ebert, D., Sousa, M.C.: Illustrative visualization for medicine and science. In: Proceedings of ACM SIGGRAPH Courses (2006)

  21. Strothotte, T., Schlechtweg, S.: Non-Photorealistic Computer Graphics: Modeling, Rendering, and Animation. Morgan Kaufmann, San Mateo (2002)

    Google Scholar 

  22. DeCarlo, D., Santella, A.: Stylization and abstraction of photographs. ACM Trans. Graph. 21(3), 769–776 (2002)

    Article  Google Scholar 

  23. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph. 22(3), 313–318 (2003)

    Article  Google Scholar 

  24. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. Graph. 23(3), 689–694 (2004)

    Article  Google Scholar 

  25. Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 228–242 (2008)

    Article  Google Scholar 

  26. Toler-Franklin, C., Finkelstein, A., Rusinkiewicz, S.: Illustration of complex real-world objects using images with normals. Comput. Graph. Forum 26(3), 385–394 (2007)

    Article  Google Scholar 

  27. Lischinski, D., Farbman, Z., Uyttendaele, M., Szeliski, R.: Interactive local adjustment of tonal values. ACM Trans. Graph. 25(3), 646–653 (2006)

    Article  Google Scholar 

  28. Ihrke, M., Ritschel, T., Smith, K., Grosch, T., Myszkowski, K., Seidel, H.-P.: A perceptual evaluation of (3D) unsharp masking, human vision and electronic imaging XIII. SPIE 72400R–72400R-12 (2009)

  29. Koenderink, J.J.: What does the occluding contour tell us about solid shape. Perception 13(3) (1984)

  30. Gooch, B., Sloan, P.-P.J., Gooch, A., Shirley, P., Riesenfeld, R.: Interactive technical illustration. In: Proceedings of ACM Symposium on Interactive 3D graphics, pp. 31–38 (1999)

  31. Hertzmann, A., Zorin, D.: Illustrating smooth surfaces. In: Proceedings of ACM SIGGRAPH 2000, pp. 517–526 (2000)

  32. DeCarlo, D., Finkelstein, A., Rusinkiewicz, S.: Interactive rendering of suggestive contours with temporal coherence. In: Proceedings of NPAR, pp. 15–24 (2004)

  33. DeCarlo, D., Rusinkiewicz, S.: Highlight lines for conveying shape. In: Proceedings of NPAR, pp. 63–70 (2007)

  34. Judd, T., Durand, F., Adelson, E.H., Santella, A.: Apparent ridges for line drawing. ACM Trans. Graph. 26(3), 19:1–19:7 (2007)

    Article  Google Scholar 

  35. Xie, X., He, Y., Tian, F., Seah, H.-S., Gu, X., Qin, H.: An effective illustrative visualization framework based on photic extremum lines (PELs). IEEE Trans. Vis. Comput. Graph. 13(6), 1328–1335 (2007)

    Article  Google Scholar 

  36. Interrante, V., Fuchs, H., Pizer, S.M.: Enhancing transparent skin surfaces with ridge and valley lines. In: IEEE Visualization, pp. 52–59 (1995)

  37. Kalnins, R.D., Markosian, L., Meier, B.J., Kowalski, M.A., Lee, J.C., Davidson, P.L., Webb, M., Hughes, J.F., Finkelstein, A., WYSIWYG, N.P.R.: drawing strokes directly on 3D models. ACM Trans. Graph. 21(3), 755–762 (2002)

    Article  Google Scholar 

  38. Ohtake, Y., Belyaev, A., Seidel, H.-P.: Ridge-valley lines on meshes via implicit surface fitting. ACM Trans. Graph. 23(3), 609–612 (2004)

    Article  Google Scholar 

  39. Lagendijk, R.L., Biemond, J., Boekee, D.E.: WYSIWYG NPR: Drawing strokes directly on 3D models. IEEE Trans. Acoust. Speech Signal Process. 36(12), 1874–1888 (1988)

    Article  MATH  Google Scholar 

  40. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 27(3), 1–10 (2008)

    Article  Google Scholar 

  41. Ramanarayanan, G., Ferwerda, J.A., Walter, B., Bala, K.: Visual equivalence: towards a new standard for image fidelity. ACM Trans. Graph. 26(3), 76:1–76:11 (2007)

    Article  Google Scholar 

  42. Todd, J.T., Mingolla, E.: Perception of surface curvature and direction of illumination from patterns of shading. J. Exp. Psychol. Hum. Percept. Perform. 9(4), 583–595 (1983)

    Article  Google Scholar 

  43. Todd, J.T., Farley Norman, J., Mingolla, E.: Lightness constancy in the presence of specular highlights. Psychol. Sci. 15(1), 33–39 (2004)

    Article  Google Scholar 

  44. Ramanarayanan, G., Bala, K., Ferwerda, J.A.: Perception of complex aggregates. ACM Trans. Graph. 27(3), 60:1–60:10 (2008)

    Article  Google Scholar 

  45. Fleming, R.W., Dror, R.O., Adelson, E.H.: Real-world illumination and the perception of surface. J. Vis. 3(5), 347–368 (2003)

    Google Scholar 

  46. Fleming, R.W., Torralba, A., Adelson, E.H.: Specular reflections and the perception of shape. J. Vis. 4(9), 798–820 (2004)

    Google Scholar 

  47. O’Shea, J.P., Banks, M.S., Agrawala, M.: The assumed light direction for perceiving shape from shading. In: Proceedings of NPAR, pp. 135–142 (2008)

  48. Funkhouser, T., Shilane, P.: Partial matching of 3D shapes with priority-driven search. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, pp. 131–142 (2006)

  49. Liu, R., Zhang, H.: Mesh segmentation via spectral embedding and contour analysis. In: Proceedings of NPAR, pp. 111–119 (2007)

  50. Ng, R., Ramamoorthi, R., Hanrahan, P.: All frequency shadows using non-linear wavelet lighting approximation. ACM Trans. Graph. 22(3), 376–381 (2003)

    Article  Google Scholar 

  51. Buatois, L., Caumon, G., Levy, B.: Concurrent number cruncher: An efficient sparse linear solver on the GPU. In: High Performance Computation Conference (HPCC). Springer, Berlin (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Chen, W., Fang, J. et al. Perceptually-motivated shape exaggeration. Vis Comput 26, 985–995 (2010). https://doi.org/10.1007/s00371-010-0431-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0431-4

Keywords

Navigation