Skip to main content
Log in

An MLS-based cartoon deformation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present an image deformation method driven by skeleton; it is based on MLS deformation algorithm (Schaefer et al. in SIGGRAPH, vol. 25, pp. 533–540, 2006). We improve the MLS deformation by defining a new weight function based on skeleton. Being different from the weight function based on control points, our weight function has benefited from the shape information of undeformed object and keeps deformation local, therefore our method can achieve a realistic effect. In cartoon video, we propose a new method to track the skeleton in the video, to build new origin skeleton and new target skeleton on each frame, and to apply our image deformation method to each frame and maintain spatiotemporal consistency. Results demonstrate that our method is able to decrease the effect of squeeze and use less control points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations. PAMI 22, 567–585 (1989)

    Google Scholar 

  2. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. ECCV 12(1), 25–36 (2004)

    Google Scholar 

  3. Chen, T., Cheng, M.-M., Tan, P., Shamir, A., Hu, S.-M.: Sketch2photo: Internet image montage. ACM Trans. Graph. (to appear)

  4. Cuno, A., Esperanca, C., Oliveira, A., Cavalcanti, P.R.: 3D as-rigid-as-possible deformations using MLS (2008)

  5. Igarashi, T., Moscovich, T., Hughes, J.: As-rigid-as-possible shape manipulation. In: SIGGRAPH, vol. 24, pp. 1134–1141 (2005)

  6. Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Trans. Graph. 26(3), 71 (2007)

    Article  Google Scholar 

  7. Xiao, J., Cheng, H., Sawhney, H., Rao, C., Isnardi, M.: Bilateral filtering-based optical flow estimation with occlusion detection. ECCV 9(4), 211–224 (2006)

    Google Scholar 

  8. Lee, S.Y., Chwa, K.Y., Shin, S.Y.: Image metamorphosis using snakes and free-form deformations. Comput. Graph. (Ann. Conf. Ser.) 29, 439–448 (1995)

    Google Scholar 

  9. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  10. Mohr, A., Tokheim, L., Gleicher, M.: Direct manipulation of interactive character skins. In: Proceedings of the 2003 symposium on Interactive 3D Graphics, pp. 27–30. ACM, New York (2003)

    Chapter  Google Scholar 

  11. Price, B., Barrett, W.: Object-based vectorization for interactive image editing. Vis. Comput. 22(9), 661–670 (2006)

    Article  Google Scholar 

  12. Sand, P.: Particle video: Long-range motion estimation using point trajectories. In: CVPR, vol. 24, pp. 2195–2202 (2006)

  13. Rustamov, R., Lipman, Y., Funkhouser, T.: Interior distance using barycentric coordinates. In: Computer Graphics Forum (Symposium on Geometry Processing), 28(5), July 2009

  14. Schaefer, S., Mcphail, T., Warren, J.D.: Image deformation using moving least squares. In: SIGGRAPH, vol. 25, pp. 533–540 (2006)

  15. Schiwietz, T., Georgii, J., Westermann, R.: Free-form image, pp. 27–36 (2007)

  16. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: SIGGRAPH ’86: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, pp. 151–160. ACM, New York (1986)

    Chapter  Google Scholar 

  17. Weng, Y.-L., Shi, X.-H., Bao, H.-J.: Sketching mls image deformation on the GPU. Comput. Graph. Forum 27(7), 1789–1796 (2008)

    Article  Google Scholar 

  18. Weng, Y., Xu, W., Wu, Y., Zhou, K., Guo, B.: 2D shape deformation using nonlinear least squares optimization. Vis. Comput. 22(9), 653–660 (2006)

    Article  Google Scholar 

  19. Xu, K., Li, Y., Ju, T., Hu, S.-M., Liu, T.-Q.: Efficient affinity-based edit propagation using k-d tree. ACM Trans. Graph. (to appear)

  20. Yan, H.-B., Hu, S., Martin, R.R., Yang, Y.-L.: Shape deformation using a skeleton to drive simplex transformations. IEEE Trans. Vis. Comput. Graph. 14(3), 693–706 (2008)

    Article  Google Scholar 

  21. Zhang, G.-X., Cheng, M.-M., Hu, S.-M., Liu, R.R.M.: A shape-preserving approach to image resizing. Comput. Graph. Forum 28, 2009 (1897–1906)

    Google Scholar 

  22. Zhang, S.-H., Chen, T., Zhang, Y.-F., Hu, S.-M.: Vectorizing cartoon animations. TVCG 99(2), 1077–2626 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Shen.

Electronic Supplementary Material

Below is the link to the electronic supplementary material. (MPG 17.3 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Y., Ma, L. & Liu, H. An MLS-based cartoon deformation. Vis Comput 26, 1229–1239 (2010). https://doi.org/10.1007/s00371-009-0404-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-009-0404-7

Navigation