Skip to main content
Log in

Streaming surface sampling using Gaussian ε-nets

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We propose a robust, feature preserving and user-steerable mesh sampling algorithm, based on the one-to-many mapping of a regular sampling of the Gaussian sphere onto a given manifold surface. Most of the operations are local, and no global information is maintained. For this reason, our algorithm is amenable to a parallel or streaming implementation and is most suitable in situations when it is not possible to hold all the input data in memory at the same time. Using ε-nets, we analyze the sampling method and propose solutions to avoid shortcomings inherent to all localized sampling methods. Further, as a byproduct of our sampling algorithm, a shape approximation is produced. Finally, we demonstrate a streaming implementation that handles large meshes with a small memory footprint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The ball-pivoting algorithm for surface reconstruction. IEEE Trans. Vis. Comput. Graph. 5(4), 349–359 (1999)

    Article  Google Scholar 

  2. Clarkson, K.L.: Building triangulations using ε-nets. In: SIGACT Symposium. ACM, New York (2006)

    Google Scholar 

  3. Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Trans. Graph. 23(3), 905–914 (2004). http://doi.acm.org/10.1145/1015706.1015817

    Article  Google Scholar 

  4. Dey, T.K.: Curve and Surface Reconstruction: Algorithms with Mathematical Analysis. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2006).

    Google Scholar 

  5. Dong, W., Li, J., Kuo, J.: Fast mesh simplification for progressive transmission. In: Proceedings International Conference on Multimedia and Expo ICME 2000. IEEE Press, New York (2000)

    Google Scholar 

  6. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings ACM SIGGRAPH, pp. 209–216. ACM, New York (1997)

    Google Scholar 

  7. Gopi, M., Krishnan, S., Silva, C.: Surface reconstruction using lower dimensional localized delaunay triangulation. Eurographics 19(3), 467–478 (2000)

    Google Scholar 

  8. Gruber, P.M.: Optimum quantization and its applications. Adv. Math. 186, 456–497 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Heckbert, P.S., Garland, M.: Survey of polygonal surface simplification algorithms. Tech. Rep., Computer Science Department, Carnegie Mellon University (1997)

  10. Hoppe, H.: Progressive meshes. In: SIGGRAPH, pp. 99–108. ACM, New York (1996)

    Google Scholar 

  11. Isenburg, M., Lindstrom, P.: Streaming meshes. In: Proceedings IEEE Visualization, pp. 231–238 (2005)

  12. Luebke, D.P.: A developer’s survey of polygonal simplification algorithms. IEEE Comput. Graph. Appl. 21(3), 24–35 (2001)

    Article  Google Scholar 

  13. Nadler, E.: Piecewise-linear best l 2 approximation on triangulations. In: Chui, C.K., Schumaker, L.L., Ward, J.D. (eds.) Approximation Theory, pp. 499–502. Academic Press, San Diego (1986)

    Google Scholar 

  14. O’Neill, B.: Elementary Differential Geometry, 2nd edn. Academic Press, San Diego (1997). www.apnet.com

    MATH  Google Scholar 

  15. Pajarola, R.: Stream-processing points. In: Proceedings IEEE Visualization, pp. 239–246 (2005)

  16. Pottmann, H., Krasauskas, R., Hamann, B., Joy, K., Seibold, W.: On piecewise linear approximation of quadratic functions. J. Geom. Graph. 4(1), 31–53 (2000)

    MATH  MathSciNet  Google Scholar 

  17. Sheffer, A.: Model simplification for meshing using face clustering. Comput. Aided Des. 33, 925–934 (2001)

    Article  Google Scholar 

  18. Vetterli, M., Marziliano, P., Blu, T.: Sampling signals with finite rate of innovation. IEEE Trans. Signal Proc. 50(6), 1417–1428 (2002). doi:10.1109/TSP.2002.1003065

    Article  MathSciNet  Google Scholar 

  19. Weiler, K.: Edge-based data structures for solid modeling in curved-surface environments. IEEE Comput. Graph. Appl. 5(1), 21–40 (1985)

    Article  Google Scholar 

  20. Yamauchi, H., Gumhold, S., Zayer, R., Seidel, H.P.: Mesh segmentation driven by Gaussian curvature. Vis. Comput. 21(8–10), 649–658 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Diaz-Gutierrez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaz-Gutierrez, P., Bösch, J., Pajarola, R. et al. Streaming surface sampling using Gaussian ε-nets. Vis Comput 25, 411–421 (2009). https://doi.org/10.1007/s00371-009-0351-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-009-0351-3

Keywords

Navigation