Skip to main content
Log in

Interactive skeletonization of intensity volumes

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present an interactive approach for identifying skeletons (i.e. centerlines) in intensity volumes, such as those produced by biomedical imaging. While skeletons are very useful for a range of image analysis tasks, it is extremely difficult to obtain skeletons with correct connectivity and shape from noisy inputs using automatic skeletonization methods. In this paper we explore how easy-to-supply user inputs, such as simple mouse clicking and scribbling, can guide the creation of satisfactory skeletons. Our contributions include formulating the task of drawing 3D centerlines given 2D user inputs as a constrained optimization problem, solving this problem on a discrete graph using a shortest-path algorithm, building a graphical interface for interactive skeletonization and testing it on a range of biomedical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abeysinghe, S.S., Baker, M., Chiu, W., Ju, T.: Segmentation-free skeletonization of grayscale volumes for shape understanding. In: Shape Modeling and Applications. IEEE International Conference on SMI 2008, pp. 63–71 (2008)

  2. Abeysinghe, S.S., Coleman, R., Marsh, M., Ruths, T., Baker, M., Chiu, W., Ju, T.: Gorgon—an interactive molecular modeling system. http://www.cs.wustl.edu/~ssa1/gorgon/

  3. Armstrong, C.J., Price, B.L., Barrett, W.A.: Interactive segmentation of image volumes with live surface. Comput. Graph. 31(2), 212–229 (2007)

    Article  Google Scholar 

  4. Barrett, W.A., Mortensen, E.N.: Interactive live-wire boundary extraction. Med. Image Anal. 1(4), 331–341 (1997)

    Article  Google Scholar 

  5. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient n–d image segmentation. Int. J. Comput. Vis. 70(2), 109–131 (2006)

    Article  Google Scholar 

  6. Chiu, W., Baker, M., Jiang, W., Dougherty, M., Schmid, M.: Electron cryomicroscopy of biological machines at subnanometer resolution. Structure (Camb.) 13, 363–372 (2005)

    Article  Google Scholar 

  7. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: A minimal path approach. Int. J. Comput. Vis. 24(1), 57–78 (1997)

    Article  Google Scholar 

  8. Cornea, N.D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE Trans. Vis. Comput. Graph. 13(3), 530–548 (2007)

    Article  Google Scholar 

  9. Deschamps, T., Cohen, L.D.: Minimal paths in 3d images and application to virtual endoscopy. In: ECCV ’00: Proceedings of the 6th European Conference on Computer Vision—Part II, pp. 543–557. Springer, London (2000)

    Google Scholar 

  10. Eberly, D., Gardner, R., Morse, B., Pizer, S., Scharlach, C.: Ridges for image analysis. J. Math. Imaging Vis. 4(4), 353–373 (1994)

    Article  Google Scholar 

  11. Falcao, A., Udupa, J., Miyazawa, F.: An ultra-fast user-steered image segmentation paradigm: live wire on the fly. IEEE Trans. Med. Imaging 19(1), 55–62 (2000)

    Article  Google Scholar 

  12. Furst, J.D., Pizer, S.M., Eberly, D.H.: Marching cores: A method for extracting cores from 3d medical images. In: MMBIA ’96: Proceedings of the 1996 Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA ’96), p. 124. IEEE Computer Society, Washington (1996)

    Chapter  Google Scholar 

  13. Jiang, W., Baker, M.L., Jakana, J., Weigele, P.R., King, J., Chiu, W.: Backbone structure of the infectious 15 virus capsid revealed by electron cryomicroscopy. Nature 451, 1130–1134 (2008)

    Article  Google Scholar 

  14. Ju, T., Baker, M., Chiu, W.: Computing a family of skeletons of volumetric models for shape description. Comput. Aided Des. 39(5), 352–360 (2007)

    Article  Google Scholar 

  15. Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model-based detection of tubular structures in 3d images. Comput. Vis. Image Underst. 80(2), 130–171 (2000)

    Article  MATH  Google Scholar 

  16. Krissian, K., Vaillant, R., Trousset, Y., Malandain, G., Ayache., N.: Automatic and accurate measurement of a cross-sectional area of vessels in 3d x-ray angiography images. In: Proc. of SPIE 2000 (2000)

  17. Krissian, K., Kikinis, R., Westin, C.F.: Algorithms for extracting vessel centerlines. Tech. Rep. 0003, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Laboratory of Mathematics in Imaging (2004)

  18. Metz, C.T., Schaap, M., van Walsum, T., van der Giessen, A., Weustink, A., Mollet, N., Krestin, G., Niessen, W.: 2008 MICCAI workshop: 3d segmentation in the clinic: A grand challenge II—coronary artery tracking. http://hdl.handle.net/10380/1399

  19. Mortensen, E.N., Barrett, W.A.: Intelligent scissors for image composition. In: SIGGRAPH ’95: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 191–198. ACM, New York (1995)

    Chapter  Google Scholar 

  20. Nathan, A., Lee, S.L., Marquez, J., Ju, T., Pryse, K., Elson, E., Genin, G.M.: Active and passive responses of myofibroblasts in response to mechanical stretching in 3d culture. In: Proceedings of the ASME 2008 Summer Bioengineering Conference (SBC2008) (2008)

  21. Poon, M., Hamarneh, G., Abugharbieh, R.: Efficient interactive 3d livewire segmentation of complex objects with arbitrary topology. Comput. Med. Imaging Graph. 32(8), 639–650 (2008)

    Article  Google Scholar 

  22. Reniers, D., van Wijk, J., Telea, A.: Computing multiscale curve and surface skeletons of genus 0 shapes using a global importance measure. IEEE Trans. Vis. Comput. Graph. 14(2), 355–368 (2008)

    Article  Google Scholar 

  23. Selle, D., Preim, B., Schenk, A., Peitgen, H.: Analysis of vasculature for liver surgical planning. IEEE Trans. Med. Imaging 21(11), 1344–1357 (2002)

    Article  Google Scholar 

  24. Siddiqi, K., Pizer, S. (eds.): Medial Representations: Mathematics, Algorithms and Applications. Springer, Berlin (2008)

    MATH  Google Scholar 

  25. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Leipzig (1998)

    MATH  Google Scholar 

  26. Whitaker, R.T., Breen, D.E., Museth, K., Soni, N.: A framework for level set segmentation of volume datasets. In: Volume Graphics (2001)

  27. Wong, C.J., Rice, R.L., Baker, N.A., Ju, T., Lohman, T.M.: Probing 3′-ssdna loop formation in E. coli recbcd/recbc-dna complexes using non-natural DNA: A model for “chi” recognition complexes. J. Mol. Biol. 362(1), 26–43 (2006)

    Article  Google Scholar 

  28. Yim, P., Choyke, P., Summers, R.: Gray-scale skeletonization of small vessels in magnetic resonance angiography. IEEE Trans. Med. Imaging 19(6), 568–576 (2000)

    Article  Google Scholar 

  29. Yu, Z., Bajaj, C.: A structure tensor approach for 3d image skeletonization: Applications in protein secondary structure analysis. Image Processing, 2006 IEEE International Conference, pp. 2513–2516 (8–11 Oct. 2006)

  30. Yushkevich, P., Piven, J., Hazlett, H., Smith, R., Ho, S., Gee, J.: User-guided 3d active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31, 1116–1128 (2006)

    Article  Google Scholar 

  31. Zhang, H., Maslov, K., Stoica, G., Wang, L.: Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24, 848–851 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasakthi S. Abeysinghe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abeysinghe, S.S., Ju, T. Interactive skeletonization of intensity volumes. Vis Comput 25, 627–635 (2009). https://doi.org/10.1007/s00371-009-0325-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-009-0325-5

Keywords

Navigation