Skip to main content
Log in

Interactive HDR lighting of dynamic participating media

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we present two optimization techniques to light and render volumetric data of inhomogeneous participating media. Both are independent of the lighting model selected. We use an implementation of the ray marching algorithm to approximate the Radiance Transfer Equation. The system can calculate single scattering in time-varying isotropic participating media with the incident field being modeled as a high dynamic range (HDR) environment map. We can use dynamic lighting (with certain restrictions) and free camera movement without using any precomputations while achieving interactive frame rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blasi, P., Saẽc, B.L., Schlick, C.: A rendering algorithm for discrete volume density objects. Comput. Graph. Forum (Eurographics ’93) 12(3), 201–210 (1993)

    Article  Google Scholar 

  2. Blinn, J.F.: Light reflection functions for simulation of clouds and dusty surfaces. SIGGRAPH Comput. Graph. 16(3), 21–29 (1982)

    Article  Google Scholar 

  3. Cerezo, E., Pérez, F., Pueyo, X., Serón, F.J., Sillion, F.X.: A survey on participating media rendering techniques. Vis. Comput. 21(5), 303–328 (2005)

    Article  Google Scholar 

  4. Chandrasekhar, S.: Radiative Transfer. Clarendon, Oxford (1950)

    MATH  Google Scholar 

  5. Cohen, J., Debevec, P.: The LightGen HDR shop plugin. http://www.hdrshop.com/main-pages/plugins.html (2001)

  6. Cuntz, N., Kolb, A.: Fast hierarchical 3d distance transforms on the GPU. In: Eurographics 07 (Short Presentations) (2007)

  7. Donnelly, W.: Per-pixel displacement mapping with distance functions. In: GPU Gems 2, Programming Techniques for High-Performance Graphics and General-Purpose Computation, pp. 123–136. Addison–Wesley, Reading (2005). Chap. 8

    Google Scholar 

  8. Engel, K., Ertl, T.: Interactive high-quality vollume rendering with flexible consumer graphics hardware. In: Eurographics State of the Art of Report (2002)

  9. Entezari, A., Scoggins, R., Möller, T., Machiraju, R.: Shading for Fourier volume rendering. In: VVS’02: Proceedings of the 2002 IEEE Symposium on Volume Visualization and Graphics, pp. 131–138. IEEE Press, New York (2002)

    Chapter  Google Scholar 

  10. Goodnight, N., Wang, R., Woolley, C., Humphreys, G.: Interactive time-dependent tone mapping using programmable graphics hardware. In: EGRW’03: Proceedings of the 14th Eurographics Workshop on Rendering, pp. 26–37. Eurographics Association, Aire-la-Ville (2003)

    Google Scholar 

  11. Grzeszczuk, R., Henn, C., Yagel, R.: Advanced geometry techniques for ray casting volumes. In: ACM SIGGRAPH 1998 Course Notes, Course 4 (1998)

  12. Guthe, S., Wand, M., Gonser, J., Straßer, W.: Interactive rendering of large volume data sets. In: IEEE Visualization (2002)

  13. Harris, M.J., Lastra, A.: Real-time cloud rendering. In: Chalmers, A., Rhyne, T.M. (eds.) EG 2001 Proceedings, vol. 20(3), pp. 76–84. Blackwell, Oxford (2001)

    Google Scholar 

  14. Hawkins, T., Einarsson, P., Debevec, P.: Acquisition of time-varying participating media. In: SIGGRAPH’05: ACM SIGGRAPH 2005 Papers, pp. 812–815. Assoc. Comput. Mach., New York (2005)

    Chapter  Google Scholar 

  15. Hegeman, K., Ashikhmin, M., Premoze, S.: A lighting model for general participating media. In: SI3D, pp. 117–124 (2005)

  16. Ishimaru, A.: Wave Propagation and Scattering in Random Media. Academic Press, New York (1978)

    Google Scholar 

  17. Jensen, H.W., Christensen, P.H.: Efficient simulation of light transport in scenes with participating media using photon maps. In: SIGGRAPH’98: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 311–320. Assoc. Comput. Mach., New York (1998). DOI: 10.1145/280814.280925, ISBN 0-89791-999-8

    Chapter  Google Scholar 

  18. Kajiya, J.T., Herzen, B.P.V.: Ray tracing volume densities. In: SIGGRAPH’84: Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques, pp. 165–174. Assoc. Comput. Mach., New York (1984)

    Chapter  Google Scholar 

  19. Kalos, M.H., Whitlock, P.A.: Monte Carlo Methods, vol. 1: basics. Wiley, New York (1986)

    Book  Google Scholar 

  20. Kay, T.L., Kajiya, J.T.: Ray tracing complex scenes. In: SIGGRAPH’86: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, pp. 269–278. Assoc. Comput. Mach., New York (1986)

    Chapter  Google Scholar 

  21. Klein, T., Strengert, M., Stegmaier, S., Ertl, T.: Exploiting frame-to-frame coherence for accelerating high-quality volume raycasting on graphics hardware. In: IEEE Visualization, p. 29 (2005)

  22. Kollig, T., Keller, A.: Efficient illumination by high dynamic range images. In: EGRW’03: Proceedings of the 14th Eurographics Workshop on Rendering, pp. 45–50 (2003)

  23. Kruger, J., Westermann, R.: Acceleration techniques for GPU-based volume rendering. In: VIS’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), p. 38. IEEE Comput. Soc., Los Alamitos (2003)

    Google Scholar 

  24. Lafortune, E.P., Willems, Y.D.: Rendering participating media with bidirectional path tracing. In: Proceedings of the Eurographics workshop on Rendering techniques’96, pp. 91–100. Springer, Berlin (1996)

    Google Scholar 

  25. LaMar, E., Hamann, B., Joy, K.I.: Multiresolution techniques for interactive texture-based volume visualization. In: VIS’99: Proceedings of the Conference on Visualization’99, pp. 355–361. IEEE Comput. Soc., Los Alamitos (1999)

    Google Scholar 

  26. Li, W., Mueller, K., Kaufman, A.: Empty space skipping and occlusion clipping for texture-based volume rendering. In: VIS’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), p. 42. IEEE Comput. Soc., Los Alamitos (2003)

    Google Scholar 

  27. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: LeCam, L.M., Neyman, J. (eds.) Proceedings of Fifth Berkeley Symposium on Math. Stat. and Prob., vol. 1, pp. 281–297. Univ. California Press, Berkeley (1967)

    Google Scholar 

  28. Max, N.L.: Atmospheric illumination and shadows. SIGGRAPH Comput. Graph. 20(4), 117–124 (1986)

    Article  Google Scholar 

  29. Narasimhan, S.G., Nayar, S.K.: Shedding Light on the Weather. IEEE Comput. Soc., Los Alamitos (2003), p. 665

    Google Scholar 

  30. Ng, R., Ramamoorthi, R., Hanrahan, P.: All-frequency shadows using non-linear wavelet lighting approximation. ACM Trans. Graph. 22(3), 376–381 (2003)

    Article  Google Scholar 

  31. NVidiaCorporation: Cg language specification. http://developer.download.nvidia.com/cg/Cg_1.5/1.5.0/0019/Cg_Specification.pdf

  32. NVidiaCorporation: Framebuffer object extension. http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer_object.txt

  33. Ostromoukhov, V., Donohue, C., Jodoin, P.M.: Fast hierarchical importance sampling with blue noise properties. ACM Trans. Graph. 23(3), 488–495 (2004)

    Article  Google Scholar 

  34. Ramamoorthi, R., Hanrahan, P.: An efficient representation for irradiance environment maps. In: SIGGRAPH’01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 497–500. Assoc. Comput. Mach., New York (2001)

    Chapter  Google Scholar 

  35. Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. In: SIGGRAPH’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 267–276. Assoc. Comput. Mach., New York (2002)

    Chapter  Google Scholar 

  36. Ritsche, N.: Real-time shell space rendering of volumetric geometry. In: GRAPHITE’06: Proceedings of the 4th International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia, pp. 265–274. Assoc. Comput. Mach., New York (2006)

    Chapter  Google Scholar 

  37. Rushmeier, H.E., Torrance, K.E.: The zonal method for calculating light intensities in the presence of a participating medium. In: SIGGRAPH’87: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 293–302. Assoc. Comput. Mach., New York (1987)

    Chapter  Google Scholar 

  38. Shi, L., Yu, Y.: Controllable smoke animation with guiding objects. ACM Trans. Graph. 24(1), 140–164 (2005)

    Article  MathSciNet  Google Scholar 

  39. Sloan, P.P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In: SIGGRAPH’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 527–536. Assoc. Comput. Mach., New York (2002)

    Chapter  Google Scholar 

  40. Stam, J.: Stochastic rendering of density fields. In: Proceedings of Graphics Interface’94, pp. 51–58 (1994)

  41. Stam, J.: Multiple scattering as a diffusion process. In: Hanrahan, P.M., Purgathofer, W. (eds.) Rendering Techniques’95 (Proceedings of the Sixth Eurographics Workshop on Rendering), pp. 41–50. Springer, Berlin (1995)

    Google Scholar 

  42. Sun, B., Ramamoorthi, R., Narasimhan, S.G., Nayar, S.K.: A practical analytic single scattering model for real time rendering. In: SIGGRAPH’05: ACM SIGGRAPH 2005 Papers, pp. 1040–1049. Assoc. Comput. Mach., New York (2005)

    Chapter  Google Scholar 

  43. Szirmay-Kalos, L., Sbert, M., Umenhoffer, T.: Real-time multiple scattering in participating media with illumination networks. In: Eurographics Symposium on Rendering, pp. 277–282 (2005)

  44. Tost, D., Grau, S., Ferre, M., Puig, A.: Ray-casting time-varying volume data sets with frame-to-frame coherence. In: Proceedings of SPIE (2006)

  45. Vollrath, J., Weiskopf, D., Ertl, T.: A generic software framework for the gpu volume rendering pipeline. In: VMV’05: Proceedings of Vision, Modeling, and Visualization Conference (2005)

  46. Westermann, R., Sevenich, B.: Accelerated volume ray-casting using texture mapping. In: VIS’01: Proceedings of the Conference on Visualization’01, pp. 271–278, IEEE Comput. Soc., Los Alamitos, 2001

  47. Zhou, K., Hou, Q., Gong, M., Snyder, J., Guo, B., Shum, H.Y.: Fogshop: Real-time design and rendering of inhomogeneous, single-scattering media. Technical Report, Microsoft Research (2007)

  48. Zhou, K., Ren, Z., Lin, S., Bao, H., Guo, B., Shum, H.Y.: Real-time smoke rendering using compensated ray marching. Technical Report, Microsoft Research (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Navarro.

Electronic Supplementary Material

VideoObject

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navarro, F., Gutierrez, D. & Serón, F.J. Interactive HDR lighting of dynamic participating media. Vis Comput 25, 339–347 (2009). https://doi.org/10.1007/s00371-008-0299-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-008-0299-8

Keywords

Navigation