Skip to main content
Log in

Hierarchical aggregation for efficient shape extraction

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents an efficient framework which supports both automatic and interactive shape extraction from surfaces. Unlike most of the existing hierarchical shape extraction methods, which are based on computationally expensive top-down algorithms, our framework employs a fast bottom-up hierarchical method with multiscale aggregation. We introduce a geometric similarity measure, which operates at multiple scales and guarantees that a hierarchy of high-level features are automatically found through local adaptive aggregation. We also show that the aggregation process allows easy incorporation of user-specified constraints, enabling users to interactively extract features of interest. Both our automatic and the interactive shape extraction methods do not require explicit connectivity information, and thus are applicable to unorganized point sets. Additionally, with the hierarchical feature representation, we design a simple and effective method to perform partial shape matching, allowing efficient search of self-similar features across the entire surface. Experiments show that our methods robustly extract visually meaningful features and are significantly faster than related methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh segmentation based on fitting primitives. Visual Comput. 22(3), 181–193 (2006)

    Article  Google Scholar 

  2. Attene, M., Katz, S., Mortara, M., Patane, G., Spagnuolo, M., Tal, A.: Mesh segmentation – a comparative study. In: International Conference on Shape Modeling and Applications (SMI’06), p. 7. IEEE Computer Society Press (2006)

  3. Cohen-Steiner, D., Morvan, J.M.: Restricted Delaunay triangulations and normal cycle. In: ACM Symposium on Computational Geometry (San Diego, CA), pp. 237–246. ACM, New York, NY, San Diego, CA (2003)

    Google Scholar 

  4. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of ACM SIGGRAPH 99, pp. 317–324. ACM Press/Addison-Wesley Publishing Co. (1999)

  5. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., Dobkin, D.: Modeling by example. ACM Trans. Graph. 23(3), 652–663 (2004)

    Article  Google Scholar 

  6. Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. 25(1), 130–150 (2006)

    Article  Google Scholar 

  7. Garland, M., Willmott, A., Heckbert, P.S.: Hierarchical face clustering on polygonal surfaces. In: Proceedings of the 2001 Symposium on Interactive 3D Graphics (SI3D ’01), pp. 49–58. ACM (2001)

  8. Gatzke, T., Grimm, C.: Feature detection using curvature maps and the min-cut/max-flow algorithm. In: Geometric Modeling and Processing, pp. 578–584. IOS Press (2006)

  9. Gatzke, T., Grimm, C., Garland, M., Zelinka, S.: Curvature maps for local shape comparison. In: Shape Modeling International, pp. 244–256. IEEE Computer Society (2005)

  10. Hoffman, D.D., Singh, M.: Salience of visual parts. Cognition 63(1), 29–78 (1997)

    Article  Google Scholar 

  11. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: SIGGRAPH, pp. 71–78. Academic Press Professional, Inc. (1992)

  12. Ji, Z., Liu, L., Chen, Z., Wang, G.: Easy mesh cutting. Comput. Graph. Forum 25(3), 283–291 (2006)

    Article  Google Scholar 

  13. Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extraction. Visual Comput. 21(8–10), 649–658 (2005)

    Article  Google Scholar 

  14. Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. 22(3), 954–961 (2003)

    Article  Google Scholar 

  15. Lai, Y.K., Zhou, Q.Y., Hu, S.M., Martin, R.R.: Feature sensitive mesh segmentation. In: Solid and Physical Modeling Symposium 2006 (SPM’06), pp. 17–25. ACM (2006)

  16. Lange, C., Polthier, K.: Anisotropic smoothing of point sets. Spec. Issue Comput. Aided Geom. Des. 22(7) (2005)

  17. Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., Seidel, H.P.: Intelligent mesh scissoring using 3D snakes. In: Pacific Graphics, pp. 279–287. IEEE Computer Society (2004)

  18. Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., Seidel, H.P.: Mesh scissoring with minima rule and part salience. Comput. Aided Geom. Des. 22(5), 444–465 (2005)

    Article  MATH  Google Scholar 

  19. Li, X., Guskov, I.: Multi-scale features for approximate alignment of point-based surfaces. In: Symposium on Geometry Processing, pp. 217–226. Eurographics Association (2005)

  20. Liu, R., Jain, V., Zhang, H.: Subsampling for efficient spectral mesh processing. Lect. Notes Comput. Sci. 4035, 172–184 (2006)

    Article  Google Scholar 

  21. Liu, R., Zhang, H.: Segmentation of 3D meshes through spectral clustering. In: Pacific Graphics, pp. 298–305. IEEE Computer Society (2004)

  22. Liu, R., Zhang, H.: Mesh segmentation via spectral embedding and contour analysis. Comput. Graph. Forum 26(3), 385–394 (2007)

    Article  Google Scholar 

  23. Mangan, A.P., Whitaker, R.T.: Partitioning 3D surface meshes using watershed segmentation. IEEE Trans. Vis. Comput. Graph. 5(4), 308–321 (1999)

    Article  Google Scholar 

  24. Mortara, M., Patane, G., Spagnuolo, M., Falcidieno, B., Rossignac, J.: Plumber: a method for a multi-scale decomposition of 3D shapes into tubular primitives and bodies. In: Ninth ACM Symposium on Solid Modeling and Applications (SMI’04), pp. 339–344. IEEE Computer Society (2004)

  25. Ohtake, Y., Belyaev, A., Seidel, H.P.: 3D scattered data approximation with adaptive compactly supported radial basis functions. In: International Conference on Shape Modeling and Applications (SMI’04), pp. 31–39. IEEE Computer Society (2004)

  26. Page, D.L., Koschan, A., Abidi, M.: Perception-based 3D triangle mesh segmentation using fast marching watersheds. In: Computer Vision and Pattern Recognition, vol. 2, pp. 27–32. IEEE Computer Society (2003)

  27. Pauly, M., Gross, M., Kobbelt, L.P.: Efficient simplification of point-sampled surfaces. In: Visualization, pp. 163–170. IEEE Computer Society (2002)

  28. Pauly, M., Keiser, R., Gross, M.: Multi-scale feature extraction on point-sampled surfaces. In: Eurographics, pp. 281–290. Eurographics Association (2003)

  29. Pfister, H., Zwicker, M., van Baar, J., Gross, M.: Surfels: surface elements as rendering primitives. In: SIGGRAPH, pp. 335–342. ACM Press/Addison-Wesley Publishing Co. (2000)

  30. Shamir, A.: Segmentation and shape extraction of 3D boundary meshes. In: State-of-the-Art Report, Proceedings of Eurographics 2006, pp. 137–149. Eurographics Association (2006)

  31. Sharf, A., Blumenkrants, M., Shamir, A., Cohen-Or, D.: SnapPaste: an interactive technique for easy mesh composition. Visual Comput. 22(9), 835–844 (2006)

    Article  Google Scholar 

  32. Sharon, E., Brandt, A., Basri, R.: Fast multiscale image segmentation. In: Computer Vision and Pattern Recognition, vol. 1, pp. 70–77. IEEE Computer Society (2000)

  33. Sharon, E., Brandt, A., Basri, R.: Segmentation and boundary detection using multiscale intensity measurements. In: Computer Vision and Pattern Recognition, vol. 1, pp. 70–77. IEEE Computer Society (2001)

  34. Sharon, E., Galun, M., Sharon, D., Basri, R., Brandt, A.: Hierarchy and adaptivity in segmenting visual scenes. Nature 442, 810–813 (2006)

    Article  Google Scholar 

  35. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  36. Vieira, M., Shimada, K.: Surface mesh segmentation and smooth surface extraction through region growing. Comput. Aided Geom. Des. 22, 771–792 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Xiao, C., Miao, Y., Liu, S., Peng, Q.: A dynamic balanced flow for filtering point-sampled geometry. Visual Comput. 22(3), 210–219 (2006)

    Article  Google Scholar 

  38. Yamazaki, I., Natarajan, V., Bai, Z., Hamann, B.: Segmenting point sets. In: Shape Modeling and Applications, pp. 46–51. IEEE Computer Society (2006)

  39. Zelinka, S., Garland, M.: Similarity-based surface modelling using geodesic fans. In: Symposium on Geometry Processing, pp. 209–218. Eurographics Association (2004)

  40. Zelinka, S., Garland, M.: Surfacing by numbers. In: Graphics Interface, pp. 107–113. Canadian Information Processing Society (2006)

  41. Zhang, Y., Paik, J., Koschan, A., Abidi, M.A., Gorsich, D.: A simple and efficient algorithm for part decomposition of 3-D triangulated models based on curvature analysis. In: Proceedings of the International Conference on Image Processing, pp. 273–276. IEEE Computer Society (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxia Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, C., Fu, H. & Tai, CL. Hierarchical aggregation for efficient shape extraction. Vis Comput 25, 267–278 (2009). https://doi.org/10.1007/s00371-008-0226-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-008-0226-z

Keywords

Navigation