Skip to main content
Log in

Solving nonlinear polynomial systems in the barycentric Bernstein basis

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a method for solving arbitrary systems of N nonlinear polynomials in n variables over an n-dimensional simplicial domain based on polynomial representation in the barycentric Bernstein basis and subdivision. The roots are approximated to arbitrary precision by iteratively constructing a series of smaller bounding simplices. We use geometric subdivision to isolate multiple roots within a simplex. An algorithm implementing this method in rounded interval arithmetic is described and analyzed. We find that when the total order of polynomials is close to the maximum order of each variable, an iteration of this solver algorithm is asymptotically more efficient than the corresponding step in a similar algorithm which relies on polynomial representation in the tensor product Bernstein basis. We also discuss various implementation issues and identify topics for further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrams, S.L., Cho, W., Hu, C.Y., Maekawa, T., Patrikalakis, N.M., Sherbrooke, E.C., Ye, X.: Efficient and reliable methods for rounded-interval arithmetic. Comput. Aided Des. 30(8), 657–665 (1998)

    Article  MATH  Google Scholar 

  2. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge, MA (1990)

    MATH  Google Scholar 

  3. Elber, G., Kim, M.S.: Geometric constraint solver using multivariate rational spline functions. In: SMA ’01: Proceedings of the Sixth ACM Symposium on Solid Modeling and Applications, pp. 1–10. ACM Press, New York, NY, USA (2001) (DOI http://doi.acm.org/10.1145/376957.376958)

  4. Farin, G.: Triangular Bernstein–Bézier patches. Comput. Aided Geom. Des. 3(2), 83–128 (1986)

    Article  MathSciNet  Google Scholar 

  5. Farin, G.: Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide, 4th edn. Academic Press, San Diego (1997)

    MATH  Google Scholar 

  6. Farin, G.E.: Geometric Modeling: Algorithms and New Trends. SIAM, Philadelphia (1987)

    MATH  Google Scholar 

  7. Goldman, R.N.: Subdivision algorithms for Bézier triangles. Comput. Aided Des. 15(3), 159–166 (1983)

    Article  Google Scholar 

  8. Goldman, R.N.: Blossoming and knot insertion algorithms for B-spline curves. Comput. Aided Geom. Des. 7, 69–81 (1990)

    Article  MATH  Google Scholar 

  9. Goldman, R.N., Lyche, T. (eds.): Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces. SIAM, Philadelphia (1993)

  10. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science, 2nd edn. Addison–Wesley, Boston (1994)

    MATH  Google Scholar 

  11. Hanniel, I., Elber, G.: Subdivision termination criteria in subdivision multivariate solvers using dual hyperplanes representations. Comput. Aided Des. 39(5), 369–378 (2007) (DOI http://dx.doi.org/10.1016/j.cad.2007.02.004)

  12. Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. A.K. Peters, Wellesley, MA (1993) (Translated by L.L. Schumaker)

  13. Hu, C.Y., Maekawa, T., Patrikalakis, N.M., Ye, X.: Robust interval algorithm for surface intersections. Comput. Aided Des. 29(9), 617–627 (1997)

    Article  MATH  Google Scholar 

  14. Lane, J.M., Riesenfeld, R.F.: A theoretical development for the computer generation and display of piecewise polynomial surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 2, 35–46 (1980)

    Article  MATH  Google Scholar 

  15. Mourrain, B., Pavone, J.P.: Subdivision Methods for Solving Polynomial Equations. Tech. Rep. 5658, INRIA Sophia-Antipolis (2005)

  16. Sablonnière, P.: Spline and Bézier polygons associated with a polynomial spline curve. Comput. Aided Des. 10(4), 257–261 (1978)

    Article  Google Scholar 

  17. Sederberg, T.W.: Algorithm for algebraic curve intersection. Comput. Aided Des. 21(9), 547–554 (1989)

    Article  MATH  Google Scholar 

  18. Sherbrooke, E.C., Patrikalakis, N.M.: Computation of the solutions of nonlinear polynomial systems. Comput. Aided Geom. Des. 10(5), 379–405 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Waggenspack, W.N., Anderson, C.D.: Converting standard bivariate polynomials to Bernstein form over arbitrary triangular regions. Comput. Aided Des. 18(10), 529–532 (1986)

    Article  Google Scholar 

  20. Wilkinson, J.H.: Rounding Errors in Algebraic Processs. Prentice-Hall, Englewood Cliffs (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Reuter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reuter, M., Mikkelsen, T., Sherbrooke, E. et al. Solving nonlinear polynomial systems in the barycentric Bernstein basis. Visual Comput 24, 187–200 (2008). https://doi.org/10.1007/s00371-007-0184-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-007-0184-x

Keywords

Navigation