Skip to main content
Log in

Ray casting implicit fractal surfaces with reduced affine arithmetic

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

A method is presented for ray casting implicit surfaces defined by fractal combinations of procedural noise functions. The method is robust and uses affine arithmetic to bound the variation of the implicit function along a ray. The method is also efficient due to a modification in the affine arithmetic representation that introduces a condensation step at the end of every non-affine operation. We show that our method is able to retain the tight estimation capabilities of affine arithmetic for ray casting implicit surfaces made from procedural noise functions while being faster to compute and more efficient to store.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barr, A.H.: Ray tracing deformed surfaces. In: D.C. Evans, R.J. Athay (eds.) Computer Graphics (SIGGRAPH ’86 Proceedings), pp. 287–296. ACM, Boston (1986)

  2. Blinn, J.F.: A generalization of algebraic surface drawing. ACM Trans. Graph. 1(3), 235–256 (1982)

    Article  Google Scholar 

  3. Bloomenthal, J.: Polygonisation of implicit surfaces. Comput. Aided Geom. Des. 5(4), 341–355 (1988)

    Article  MathSciNet  Google Scholar 

  4. de Cusatis Jr., A., de Figueiredo, L.H., Gattas, M.: Interval methods for raycasting implicit surfaces with affine arithmetic. In: Proceedings of XII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI ’99), pp. 65–71 (1999)

  5. Ebert, D.S., Musgrave, F.K., Peachey, D.R., Perlin, K., Worley, S.P.: Texturing & Modeling: A Procedural Approach, 3rd edn. Kaufmann, San Francisco (2003)

    Google Scholar 

  6. de Figueiredo, L.H., Stolfi, J.: Affine arithmetic: concepts and applications. Numer. Algorithms 37(1–4), 147–158 (2004)

    Article  MathSciNet  Google Scholar 

  7. Hanrahan, P.: Ray tracing algebraic surfaces. In: P.P. Tanner (ed.) Computer Graphics (SIGGRAPH ’83 Proceedings), pp. 83–90. ACM, Boston (1983)

  8. Hart, J.: Ray tracing implicit surfaces. In: Modeling, Visualizing and Animating Implicit Surfaces, pp. 13.1–13.15. SIGGRAPH ’93 Course Notes 25 (1993)

  9. Hart, J.C.: Sphere tracing: A geometric method for the anti-aliased ray tracing of implicit surfaces. Vis. Comput. 12(9), 527–545 (1996)

    Article  Google Scholar 

  10. Hart, J.C.: Implicit representation of rough surfaces. Comput. Graph. Forum 16(2), 91–99 (1997)

    Article  MathSciNet  Google Scholar 

  11. Heidrich, W., Slusallek, P., Seidel, H.: Sampling procedural shaders using affine arithmetic. ACM Trans. Graph. 17(3), 158–176 (1998)

    Article  Google Scholar 

  12. Kalra, D., Barr, A.H.: Guaranteed ray intersections with implicit surfaces. In: J. Lane (ed.) Computer Graphics (SIGGRAPH ’89 Proceedings), vol. 23, pp. 297–306. ACM, Boston (1989)

  13. Lewis, J.P.: Algorithms for solid noise synthesis. In: J. Lane (ed.) Computer Graphics (SIGGRAPH ’89 Proceedings), vol. 23, pp. 263–270. ACM, Boston (1989)

  14. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. In: M.C. Stone (ed.) Computer Graphics (SIGGRAPH ’87 Proceedings), vol. 21, pp. 163–169. ACM, Boston (1987)

  15. Mitchell, D.P.: Robust ray intersection with interval arithmetic. In: Proceedings of Graphics Interface ’90, pp. 68–74. Canadian Information Processing Society (1990)

  16. Moore, R.: Interval Arithmetic. Prentice-Hall, New York (1966)

    Google Scholar 

  17. Morse, B.S., Yoo, T.S., Chen, D.T., Rheingans, P., Subramanian, K.R.: Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions. In: B. Werner (ed.) Proceedings of the International Conference on Shape Modeling and Applications (SMI-01), pp. 89–98. IEEE Press, Washington, DC (2001)

  18. Musgrave, F.K.: Mojoworld: Building procedural planets. In: D.S. Ebert, F.K. Musgrave (eds.) Texturing & Modeling: A Procedural Approach, 3rd edn., chap. 20, pp. 565–615. Kauffman, San Francisco (2003)

  19. Nishimura, H., Hirai, M., Kawai, T., Kawata, T., Shirakawa, I., Omura, K.: Object modeling by distribution function and a method of image generation. Trans. IECE Japan, Part D J68-D(4), 718–725 (1985)

    Google Scholar 

  20. Peachey, D.R.: Building procedural textures. In: D.S. Ebert, F.K. Musgrave (eds.) Texturing & Modeling: A Procedural Approach, 3rd edn., chap. 2, pp. 7–94. Kauffman, San Francisco (2003)

  21. Perlin, K.: An image synthesizer. In: B.A. Barsky (ed.) Computer Graphics (SIGGRAPH ’85 Proceedings), pp. 287–296. ACM, Boston (1985)

  22. Perlin, K.: Improving noise. ACM Trans. Graph. (SIGGRAPH ’02 Proceedings) 21(3), 681–682 (2002)

    Google Scholar 

  23. Perlin, K., Hoffert, E.M.: Hypertexture. In: J. Lane (ed.) Computer Graphics (SIGGRAPH ’89 Proceedings), vol. 23, pp. 253–262. ACM, Boston (1989)

  24. Saupe, D.: Point evaluation of multi-variable random fractals. In: H. Jüergens, D. Saupe (eds.) Visualisierung in Mathematik und Naturissenschaften – Bremer Computergraphik Tage, pp. 114–126. Springer, Berlin Heidelberg New York (1989)

  25. Sherstyuk, A.: Fast ray tracing of implicit surfaces. Comput. Graph. Forum 18(2), 139–147 (1999)

    Article  Google Scholar 

  26. Stolfi, J., de Figueiredo, L.H.: Self-validated numerical methods and applications. Course notes for the 21st Brazilian Mathematics Colloquium (1997)

  27. Turk, G., O’Brien, J.F.: Modeling with implicit surfaces that interpolate. ACM Trans. Graph. 21(4), 855–873 (2002)

    Article  Google Scholar 

  28. Voss, R.F.: Fractals in nature: from characterization to simulation. In: H.O. Peitgen, D. Saupe (eds.) The Science of Fractal Images, chap. 1, pp. 21–70. Springer, Berlin Heidelberg New York (1988)

  29. van Wijk, J.J.: Ray tracing objects defined by sweeping a sphere. Comput. Graph. 9(3), 283–290 (1985)

    Article  Google Scholar 

  30. Worley, S.P.: A cellular texture basis function. In: H. Rushmeier (ed.) Computer Graphics (SIGGRAPH ’96 Proceedings), vol. 30, pp. 291–294. ACM, Boston (1996)

  31. Worley, S.P., Hart, J.C.: Hyper-rendering of hyper-textured surfaces. In: Proceedings of Implicit Surfaces ’96, pp. 99–104 (1996)

  32. Wyvill, G., Trotman, A.: Ray-tracing soft objects. In: Computer Graphics International ’90, pp. 469–475 (1990)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel N. Gamito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamito, M., Maddock, S. Ray casting implicit fractal surfaces with reduced affine arithmetic . Visual Comput 23, 155–165 (2007). https://doi.org/10.1007/s00371-006-0090-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-006-0090-7

Keywords

Navigation