Skip to main content
Log in

Topology-preserving simplification of 2D nonmanifold meshes with embedded structures

  • original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Mesh simplification has received tremendous attention over the years. Most of the previous work in this area deals with a proper choice of error measures to guide the simplification. Preserving the topological characteristics of the mesh and possibly of data attached to the mesh is a more recent topic and the subject of this paper. We introduce a new topology-preserving simplification algorithm for triangular meshes, possibly nonmanifold, with embedded polylines. In this context, embedded means that the edges of the polylines are also edges of the mesh. The paper introduces a robust test to detect if the collapse of an edge in the mesh modifies either the topology of the mesh or the topology of the embedded polylines. This validity test is derived using combinatorial topology results. More precisely, we define a so-called extended complex from the input mesh and the embedded polylines. We show that if an edge collapse of the mesh preserves the topology of this extended complex, then it also preserves both the topology of the mesh and the embedded polylines. Our validity test can be used for any 2-complex mesh, including nonmanifold triangular meshes, and can be combined with any previously introduced error measure. Implementation of this validity test is described. We demonstrate the power and versatility of our method with scientific data sets from neuroscience, geology, and CAD/CAM models from mechanical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bajaj, C., Schikore, D.: Error-bounded reduction of triangle meshes with multivariate data. SPIE 2656, 34–45 (1996)

    Google Scholar 

  2. Cignoni, P., Montani, C., Scopigno, R.: A comparison of mesh simplification algorithms. Comput. Graph. 22(1), 37–54 (1998)

    Google Scholar 

  3. Cignoni, P., Montani, C., Scopigno, R., Rocchini, C.: A general method for preserving attribute values on simplified meshes. In: IEEE Visualization, pp. 59–66 (1998)

  4. Cohen, J., Olano, M., Manocha, D.: Appearance-preserving simplification. Comput. Graph. 32, 115–122 (1998)

    Google Scholar 

  5. Dey, T., Edelsbrunner, H., Guha, S., Nekhayev, D.: Topology preserving edge contraction. Technical Report RGI-Tech-98-018, Raindrop Geomagic, Research Triangle Park, NC (1998)

  6. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Can. Cartogr. 10(2), 112–122 (1973)

    Google Scholar 

  7. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. Comput. Graph. 29, 173–182 (1995)

    Google Scholar 

  8. Erikson, C., Manocha, D.: GAPS: general and automatic polygonal simplification. In: Symposium on Interactive 3D Graphics, pp. 79–88 (1999)

  9. Floriani, L.D., Marzano, P., Puppo, E.: Multiresolution models for topographic surface description. Visual Comput. 12(7), 317–345 (1996)

    Google Scholar 

  10. Garland, M.: Multiresolution modeling: survey and future opportunities. In: Eurographics ’99 – State of the Art Reports, pp. 111–131 (1999)

  11. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. Comput. Graph. 31, 209–216 (1997)

    Google Scholar 

  12. Garland, M., Heckbert, P.S.: Simplifying surfaces with color and texture using quadric error metrics. In: Ebert, D., Hagen, H., Rushmeier, H. (eds.) IEEE Visualization, pp 263–270 (1998)

  13. Gerstner, T., Pajarola, R.: Topology preserving and controlled topology simplifying multiresolution isosurface extraction. In: Proceedings of the Conference on Visualization, pp. 259–266. IEEE Press, New York (2000)

  14. Gregorski, B.F., Sigeti, D.E., Ambrosiano, J.J., Graham, G., Wolinsky, M., Duchaineau, M.A., Hamann, B., Joy, K.I.: Multiresolution Representation of Datasets with Material Interfaces, pp. 99–117. Springer, Berlin Heidelberg New York (2003)

  15. Gross, M.H., Staadt, O.G., Gatti, R.: Efficient triangular surface approximations using wavelets and quadtree data structures. IEEE Trans. Vis. Comput. Graph. 2(2), 130–143 (1996)

    Google Scholar 

  16. Guéziec, A.: Surface simplification inside a tolerance volume. Technical Report RC 20440, IBM Research (1996)

  17. Haemer, M.D., Zyda, M.: Simplification of objects rendered by polygonal approximations. Comput. Graph. 15(2), 175–184 (1991)

    Google Scholar 

  18. Hoppe, H.: Progressive meshes. Comput. Graph. 30, 99–108 (1996)

  19. Hoppe, H.: Efficient implementation of progressive meshes. Comput. Graph. 22(1), 27–36 (1998)

    Google Scholar 

  20. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: Proceedings of SIGGRAPH, pp. 19–26 (1993)

  21. Hubeli, A., Gross, M.: Multiresolution feature extraction for unstructured meshes. In: Proceedings of IEEE Visualization, pp. 287–294. IEEE Press, New York (2001)

  22. Lindstrom, P., Turk, G.: Fast and memory efficient polygonal simplification. In: Proceedings IEEE Visualization, pp. 279–286 (1998)

  23. Luebke, D., Watson, B., Cohen, J.D., Reddy, M., Varshney, A.: Level of Detail for 3D Graphics. Elsevier, Amsterdam (2002)

  24. Luebke, D.P.: A developer’s survey of polygonal simplification algorithms. IEEE Comput. Graph. Appl. 21(3), 24–35 (2001)

    Google Scholar 

  25. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Google Scholar 

  26. Popovic, J., Hoppe, H.: Progressive simplicial complexes. In: SIGGRAPH ’97: Proceedings of the 24th Annual Conference on Computer Graphics And Interactive Techniques, pp. 217–224. New York (1997)

  27. Ronfard, R., Rossignac, J.: Full-range approximation of triangulated polyhedra. In: Proceedings of Eurographics 1996, Comput. Graph. Forum 15(3), 67–76 (1996)

  28. Rossignac, J., Borrel, P.: Multi-resolution 3d approximation for rendering complex scenes. In: Geometric Modeling Computer Graphics, ed. by Falcidieno, B., Kunii, T.L., pp. 455–465. Springer, New York (1993)

  29. Rossl, C., Kobbelt, L., Seidel, H.P.: Extraction of feature lines on triangulated surfaces using morphological operators. In: Proceedings of the AAAI Symposium on Smart Graphics, pp. 71–75 (2000)

  30. Schroeder, W.J., Zarge, J.A., Lorensen, W.E.: Decimation of triangle meshes. Comput. Graph. 26(2), 65–70 (1992)

    Google Scholar 

  31. Turk, G.: Re-tiling polygonal surfaces. Comput. Graph. 26(2), 55–64 (1992)

    Google Scholar 

  32. Wu, Y., He, Y., Cai, H.: QEM-based mesh simplification with global geometry features preserved. In: GRAPHITE ’04: Proceedings of the International Conference on Computer Graphics and Interactive Techniques in Australia and South East Asia, Singapore, pp. 50–57. ACM Press, New York, NY, USA (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Vivodtzev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vivodtzev, F., Bonneau, GP. & Le Texier, P. Topology-preserving simplification of 2D nonmanifold meshes with embedded structures. Visual Comput 21, 679–688 (2005). https://doi.org/10.1007/s00371-005-0334-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-005-0334-y

Keywords

Navigation