Skip to main content
Log in

Modeling cracks and fractures

  • original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents an interactive method for modeling cracks and fractures over a variety of materials such as glass, metal, wood, and stone. Existing physically based techniques are computationally demanding and lack control over the fracture propagation. Our approach consists in editing 2D fracture pattern and profile curves which are stored in an atlas according to material type. The fracture model is then automatically mapped onto the surface of the object and fractures are created by carving out a procedurally generated swept volume. Because the objects need not be voxelized or tetrahedralized as with physically based techniques, we are not limited in resolution when creating the geometry of cracks, which enables us to model small or very thin fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bosch, C., Merillou, S., Pueyo, X., Ghazanfarpour, D.: Surface scratches: measuring, modeling and rendering. Visual Comput. 17(1), 30–45 (2001)

    Google Scholar 

  2. Cutler, B., Dorsey, J., McMillan, L., Müller, M., Jagnow, R.: A procedural approach to authoring solid models. In: Proceedings of SIGGRAPH, pp. 302–311 (2002)

  3. Desbenoit, B., Vanderhaghe, D., Galin, E., Grosjean, B.: Interactive modeling of mushrooms. In: Eurographics short papers, pp. 37–40 (2004)

  4. Desbrun, M., Meyer, M., Schroder, P., Barr, A.H.: Implicit fairing of arbitrary meshes using diffusion and curvature flow. In: Proceedings of SIGGRAPH, pp. 317–324 (1999)

  5. Dorsey, J., Pedersen, H.K., Hanrahan, P.: Flow and changes in appearance. In: Proceedings of SIGGRAPH, pp. 411–420 (1996)

  6. Dorsey, J., Hanrahan, P.: Modeling and rendering of metallic patinas. In: Proceedings of SIGGRAPH, pp. 387–396 (1996)

  7. Dorsey, J., Edelman, A., Legakis, J., VanJensen, H., Pedersen, H.K.: Modeling and rendering of weathered stone. In: Proceedings of SIGGRAPH, pp. 225–234 (1999)

  8. Federl, P., Prusinkiewicz, P.: A texture model for cracked surfaces, with an application to tree bark. In: Proceedings of Western Computer Graphics Symposium, pp. 23–29 (1996)

  9. Federl, P., Prusinkiewicz, P.: Finite elements models of fracture formation on growing surfaces. Lecture notes in computer science, 3037, 138–145 (2004)

  10. Gobron, S., Chiba, N.: Crack pattern simulation based on 3d surface cellular automata. Visual Comput. 17(5), 287–309 (2001)

    Google Scholar 

  11. Hirota, K., Tanoue, Y., Kaneko, T.: Generation of crack patterns with a physical model. Visual Comput. 14(3), 126–137 (1998)

    Google Scholar 

  12. Hirota, K., Tanoue, Y., Kaneko, T.: Simulation of three-dimensional cracks. Visual Comput. 16(7), 371–378 (2000)

    Google Scholar 

  13. Jones, T., Durand, F., Desbrun, M.: Non-iterative, feature-preserving mesh smoothing. In: Proceedings of SIGGRAPH, pp. 943–949 (2003)

  14. Lefebvre, S., Neyret, F.: Synthesizing bark. In: Eurographics Workshop on Rendering, pp. 105–116 (2002)

  15. Martinet, A., Galin, E., Desbenoit, B., Akkouche, S.: Procedural modeling of cracks and fractures. In: Proceedings of Shape Modeling International, pp. 346–349 (2004)

  16. Mazarak, O., Martins, C., Amanatides, J.: Animating exploding objects. In: Proceedings of Graphics Interface, pp. 211–218 (1999)

  17. Merillou, S., Dischler, J.M., Ghazanfarpour, D.: A physically based model for rendering realistics scratches. Comput. Graph. Forum 23(3), 361–370 (2004)

    Google Scholar 

  18. Müller, M., McMillan, L., Dorsey, J., Jagnow, R.: Real-time simulation of deformation and fracture of stiff materials. In: Eurographics Workshop on Animation and Simulation, pp. 113–124 (2001)

  19. Neff, M., Fiume, E.: A visual model for blast waves and fracture. In: Proceedings of Graphics Interface, pp. 193–202 (1999)

  20. Norton, A., Turk, G., Bacon, B., Gerth, J., Sweeney, P.: Animation of fracture by physical modeling. Visual Comput. 7, 210–219 (1991)

    Google Scholar 

  21. O’Brien, J., Hodgins, J.: Graphical modeling and animation of brittle fracture. In: Proceedings of SIGGRAPH, pp. 137–146 (1999)

  22. O’Brien, J., Bargteil, A., Hodgins, J.: Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21(3), 291–294 (2002)

    Google Scholar 

  23. Smith, J., Witkin, A., Baraff, D.: Fast and controllable simulation of the shattering of brittle objects. In: Proceedings of Graphics Interface, pp. 27–34 (2000)

  24. Terzopoulos, D., Fleischer, K.: Modeling inelastic deformation: viscoelasticity, plasticity, fracture. In: Proceedings of SIGGRAPH, pp. 269–278 (1988)

  25. Wang, X., Wang, L., Liu, L., Hu, S., Guo, B.: Interactive modeling of tree bark. In: Proceedings of Pacific Graphics, pp. 83–91 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett Desbenoit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desbenoit, B., Galin, E. & Akkouche, S. Modeling cracks and fractures. Visual Comput 21, 717–726 (2005). https://doi.org/10.1007/s00371-005-0317-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-005-0317-z

Keywords

Navigation