Skip to main content
Log in

Scalar-field-guided adaptive shape deformation and animation

  • original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel scalar-field-guided adaptive shape deformation (SFD) technique founded on PDE-based flow constraints and scalar fields of implicit functions. Scalar fields are used as embedding spaces. Upon deformation of the scalar field, a corresponding displacement/velocity field will be generated accordingly, which results in a shape deformation of the embedded object. In our system, the scalar field creation, sketching, and manipulation are both natural and intuitive. The embedded model is further enhanced with self-optimization capability. During the deformation we can also enforce various constraints on embedded models. In addition, this technique can be used to ease the animation design. Our experiments demonstrate that the new SFD technique is powerful, efficient, versatile, and intuitive for shape modeling and animation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baerentzen J, Christensen N (2002) Volume sculpting using the level-set method. In: Proceedings of the international conference on shape modelling and applications, Banff, Canada, 17–22 May 2002. IEEE Press, Los Alamitos, CA, pp 175–182

  2. Barr AH (1984) Global and local deformations of solid primitives. In: Proceedings of SIGGRAPH ’84, Minneapolis, United States, 23–27 July 1984. ACM SIGGRAPH, New York, pp 47–58

  3. Blinn J (1982) Generalization of algebraic surface drawing. ACM Trans Graph 1(3):235–256

    Article  Google Scholar 

  4. Bloomenthal J, Bajaj C, Blinn J, Cani-Gascuel M-P, Rockwood A, Wyvill B, Wyvill G (1997) Introduction to implicit surfaces. Morgan Kaufmann, San Francisco

  5. Bloomenthal J, Wyvill B (1990) Interactive techniques for implicit modeling. In: Proceedings of the symposium on interactive 3D graphics, Snowbird, Uhta, United States, 13–15 March 1990. Comput Graph 25(2):109–116

    Google Scholar 

  6. Breen DE, Whitaker RT (2001) A level-set approach for the metamorphosis of solid models. IEEE Trans Vis Comput Graph 7(2):173–192

    Google Scholar 

  7. Chang Y-K, Rockwood AP (1994) A generalized de casteljau approach to 3D free-form deformation. In: Proceedings of SIGGRAPH ’94, Orlando, Florida, United States, 24–29 July 1994. ACM SIGGRAPH, New York, pp 257–260

  8. Coquillart S (1990) Extended free-form deformation: a sculpting tool for 3D geometric modeling. In: Proceedings of SIGGRAPH ’90, Dallas, Texas, United States, 6–10 August 1990. ACM SIGGRAPH, New York, pp 187–196

  9. Coquillart S, Jancéne P (1991) Animated free-form deformation: an interactive animation technique. In: Proceedings of SIGGRAPH ’91, Las Vegas, Nevada, United States, 28 July – 2 August 1991. ACM SIGGRAPH, New York, pp 23–26

  10. Crespin B (1999) Implicit free-form deformations. In: Proceedings of Implicit Surfaces ’99, Bordeaux, France, 13–15 September 1999, pp 17–23

  11. Desbrun M, Cani-Gascuel M-P (1998) Active implicit surface for animation. In: Proceedings of Graphics Interface, Halifax, Canada, 18–20 June 1998, pp 143–150

  12. Hoppe H, Derose T, Duchamp T, McDonald J, Stuetzle W (1993) Mesh optimization. In: Proceedings of SIGGRAPH ’93, Anaheim, California, United States, 1–6 August 1993. ACM SIGGRAPH, New York, pp 19–26

  13. Hua J, Qin H (2001) Haptic sculpting of volumetric implicit functions. In: Proceedings of the 9th Pacific conference on computer graphics and applications, Tokyo, Japan, 16–18 October 2001. IEEE Press, Los Alamitos, CA, pp 254–264

  14. Hua J, Qin H (2002) Haptics-based volumetric modeling using dynamic spline-based implicit functions. In: Proceedings of the symposium on volume visualization and graphics, Boston, Massachusetts, United States, 28–29 October 2002. ACM Press, New York, pp 55–64

  15. Igarashi T, Matsuoka S, Tanaka H (1999) Teddy: a skeching interface for 3D freeform design. In: Proceedings of SIGGRAPH ’99, Los Angeles, California, United States, 8–13 August 1999. ACM SIGGRAPH, New York, pp 409–416

  16. Jin X, Li Y, Peng Q (2000) General constrained deformations based on generalized metaballs. Comput Graph 24(2):219–231

    Google Scholar 

  17. Karpenko O, Hughes JF, Raskar R (2002) Free-form sketching with variational implicit surfaces. In: Proceedings of Eurographics 2002, Saarbrücken, Germany, 2–6 September 2002. Comput Graph Forum 21(3):585–594

    Google Scholar 

  18. Krishnamurthy V, Levoy M (1996) Fitting smooth surfaces to dense polygon meshes. In: Proceedings of SIGGRAPH ’96, New Orleans, Louisiana, United States, 4–9 August 1996. ACM SIGGRAPH, New York, pp 313–324

  19. Lazarus F, Coquillart S, Jancene P (1994) Axial deformations: an intuitive deformation technique. Comput Aided Des 26(8):607–612

    Google Scholar 

  20. MacCracken R, Joy KI (1996) Free-form deformations with lattices of arbitrary topology. In: Proceedings of SIGGRAPH ’96, New Orleans, Louisiana, United States, 4–9 August 1996. ACM SIGGRAPH, New York, pp 181–188

  21. Malladi R, Sethian JA, Vemuri BC (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Patt Anal Mach Intell 17(2):158–175

    Article  Google Scholar 

  22. Museth K, Breen DE, Whitaker RT, Barr AH (2002) Level set surface editing operators. In: Proceedings of SIGGRAPH ’02, San Antonia, Texas, United States, 21–26 July 2002. ACM SIGGRAPH, New York, pp 330–338

  23. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J Comput Phys 79:12–49

    MathSciNet  MATH  Google Scholar 

  24. Pasko A, Adzhiev V, Sourin A, Savchenko V (2001) Function representation in geometric modeling: concepts, implementation and applications. Vis Comput 11(8):429–446

    Google Scholar 

  25. Raviv A, Elber G (1999) Three dimensioinal freeform sculpting via zero sets of scalar trivariate functions. In: Proceedings of the 5th ACM symposium on solid modeling and applications, Los Angeles, California, United States, 8–13 August 1999. ACM Press, New York, pp 246–257

  26. Schmitt B, Pasko A, Schlick C (2001) Constructive modeling of frep solids using spline volumes. In: Proceedings of the 6th ACM symposium on solid modeling and applications, Los Angeles, California, United States, 12–17 August 2001. ACM Press, New York, pp 321–322

  27. Schmitt B, Pasko A, Schlick C (2003) Shape-driven deformations of functionally defined heterogeneous volumetric objects. In: Proceedings of GRAPHITE, Melbourne, Australia, 11–14 February 2003, pp 321–322

  28. Sederberg T, Parry SR (1986) Free-form deformation of solid geometric models. In: Proceedings of SIGGRAPH ’86, Dallas, Texas, United States, 18–22 August 1986. ACM SIGGRAPH, New York, pp 151–160

  29. Singh K, Fiume E (1998) Wires: a geometric deformation technique. In: Proceedings of SIGGRAPH ’98, Orlando, Florida, United States, 19–24 July 1998. ACM SIGGRAPH, New York, pp 405–414

  30. Turk G, O’Brien JF (2002) Modelling with implicit surfaces that interpolate. ACM Trans Graph 21(4):855–873

    Article  Google Scholar 

  31. Welch W (1995) Serious putty: topological design for variational curves and surfaces. PhD thesis, Carnegie Mellon University, Pittsburgh

    Google Scholar 

  32. Whitaker R (1998) A level-set approach to 3D reconstruction from range data. Int J Comput Vision 29(3):203–231

    Google Scholar 

  33. Witkin A, Heckbert P (1994) Using particles to sample and control implicit surfaces. In: Proceedings of SIGGRAPH ’94, Orlando, Florida, United States, 24–29 July 1994. ACM SIGGRAPH, New York, pp 269–278

  34. Wyvill G, McPheeters C, Wyvill B (1988) Data structure for soft objects. Vis Comput 2(4):227–234

    Google Scholar 

  35. Zeleznik RC, Herndon K, Hughes J (1996) Sketch: an interface for sketching 3D scences. In: Proceedings of SIGGRAPH ’96, New Orleans, Louisiana, United States, 4–9 August 1996. ACM SIGGRAPH, New York, pp 163–170

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Hua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, J., Qin, H. Scalar-field-guided adaptive shape deformation and animation. Visual Comp 20, 47–66 (2004). https://doi.org/10.1007/s00371-003-0225-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-003-0225-z

Keywords

Navigation