Skip to main content

Advertisement

Log in

Wave-induced sediment mobility on a morphologically complex continental shelf: eastern Brazilian shelf

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Wave-induced sediment mobility and transport are important issues regarding seabed stability and sediment balance on continental shelves. This study compares the near-bed velocity induced by waves with the critical orbital velocity for sediment mobility to determine the threshold exceedance for non-cohesive sediment motion on a portion of the eastern Brazilian continental shelf. Based on a 13-year wave time series, dominant wave climate has been used as boundary conditions in a wave propagation model. The region presents complex continental shelf morphology, varying north to south from a narrow shelf with coastal parallel isobaths to a wide shelf with irregular isobaths. The wave orbital velocities, which vary from 0 to 1.4 m s−1, are capable of mobilizing sediment across almost the entire continental shelf area, since the critical bottom sediment velocity required for potential sediment mobility varies from 0.11 to 0.13 m s−1 Such findings are of great relevance to gain a better understanding of the sediment dynamics in this area that hosts several reef banks, and that has been recently affected by a large environmental disaster through the failure of a tailing dam that resulted in an increase in contaminated sediments that have spread into the ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aller JY, Todorov JR (1997) Seasonal and spatial patterns of deeply buried calanoid copepods on the Amazon shelf: evidence for periodic erosional/depositional cycles. Estuar Coast Shelf Sci 44(1):57–66

    Article  Google Scholar 

  • Amado-Filho GM, Moura RL, Bastos AC, Salgado LT, Sumida PY, Guth AZ, Francini-Filho RB, Pereira-Filho GH, Abrantes DP, Brasileiro PS, Bahia RG, Leal RN, Kaufman L, Kleypas JA, Farina M, Thompson FL (2012) Rhodolith Beds Are Major CaCO3 Bio-Factories in the Tropical South West Atlantic. PLoS ONE 7(4):e35171. https://doi.org/10.1371/journal.pone.0035171

    Article  Google Scholar 

  • Amado-Filho GM, Maneveldt GW, Pereira-Filho GH, Manso RCC, Bahia RG, Barros-Barreto MB, Guimarães SMPB (2010) Seaweed diversity associated with a Brazilian tropical rhodolith bed. Ciencias Marinas 36(4):371–391. https://doi.org/10.7773/cm.v36i4.1782

    Article  Google Scholar 

  • Andutta FP, Miranda LB, Schettini CAF, Siegle E, Silva MP, Izumi VM, Chagas FM (2013) Temporal variations of temperature, salinity and circulation in the Peruípe river estuary (Nova Viçosa, BA). Cont Shelf Res 70:36–45

    Article  Google Scholar 

  • Apoluceno D (1998) A influência do porto de Ilhéus (BA) nos processos de acresção / erosão desenvolvidos após sua instalação. Dissertação de Mestrado. Curso de Pós-Graduação em Geologia, área de Geologia Marinha, Costeira e Sedimentar. Universidade Federal da Bahia. 132p + anexos

  • Bastos AC, Quaresma VS, Grilo CF, D’Agostini DP, Godinho E, Boni GC, Leite MD, Cagnin RC, Bisi Jr R (2016) Oceanografia Geológica – Sedimentologia. Report ICMBio. 16 pp. http://www.icmbio.gov.br/portal/images/stories/DCOM_geologia_soloncy_ufes.pdf

  • Bastos AC, Quaresma VS, Marangoni MB, D'Agostini DP, Bourguignon SN, Cetto PH, Silva AE, Amado Filho GM, Moura RL, Collins M (2015) Shelf morphology as an indicator of sedimentary regimes: A synthesis from a mixed siliciclastic - carbonate shelf on the eastern Brazilian margin. J S Am Earth Sci 63(2015):125–136. https://doi.org/10.1016/j.jsames.2015.07.003

    Article  Google Scholar 

  • Beji S (2013) Improved explicit approximation of linear dispersion relationship for gravity waves. Short communication. Coast Eng 73(2013):11–12

    Article  Google Scholar 

  • Bittencourt ACSP, Dominguez JML, Martin L, Silva IR (2000) Patterns of sediment dispersion coastwise the state of Bahia – Brazil. An Acad Bras Cienc 72(2):271–287

    Article  Google Scholar 

  • Cabral AP, Baptista MC, Hargreaves F, Gherardi DFM, Mano M (2001) Caracterização de Feições Oceanográficas e Sedimentares na Região dos Bancos Royal Charlotte e dos Abrolhos (BA, Brasil), através de dados SAR/ERS-1/2, AVHRR/NOAA, Difusômetro/ERS-2, TOPEX/POSEIDON e TM/Landsat 5. Anais do X Simpósio Brasileiro de Sensoriamento Remoto, Foz do Iguaçu, Brasil. 21-26 abril 2001. INPE, pp. 769-776

  • Campos RHS, Dominguez JML (2010) Mobility of sediments due to wave action on the continental shelf of the northern coast of the state of Bahia. Braz J Oceanogr 58:57–63

    Article  Google Scholar 

  • Carmo FF, Kamino LHY, Tobias R Jr, Campos IC, Carmo FF, Silvino G, Castro KJSX, Mauro ML, Rodrigues NUA, Miranda MPS, Pinto CEF (2017) Fundão tailings dam failures: the environment tragedy of the largest technological disaster of Brazilian mining in global context. Perspect Ecol Conserv 15(2017):145–151

    Google Scholar 

  • Carruthers TJB, Dennison WC, Longstaff BJ, Waycott M, Abal EG, McKenzie LJ, Lee Long WJ (2002) Seagrass habitats of north-east Australia: models of key processes and controls. Bull Mar Sci 71:1153–1169

    Google Scholar 

  • Castro BM, Brandini FP (2005) Multidisciplinary oceanographic processes on the Western Atlantic continental shelf between 4°N and 34°S (4,W). In: Robinson AR, Brink KH (eds) The sea, Volume 14. Chapter 8, pp 259–293

    Google Scholar 

  • Castro BM, Miranda LB (1998) Physical oceanography of the Western Atlantic continental shelf located between 4°N and 34°S (4,W). In: Robinson AR, Brink KH (eds) The sea, Volume 11. Chapter 8, pp 209–251

    Google Scholar 

  • Chang H-K, Lin S-C (1999) An explicit approximation to the wavelength of nonlinear waves. Ocean Eng 26(1999):147–160

    Google Scholar 

  • Cheroske AG, Williams SL, Carpenter RC (2000) Effects of physical and biological disturbances on algal turfs in Kaneohe Bay, Hawaii. J Exp Mar Biol Ecol 248(1):1–34

    Article  Google Scholar 

  • Clifton HE, Dingler JR (1984) Wave formed structures and paleoenvironmental reconstruction. Mar Geol 60:165–198

    Article  Google Scholar 

  • Conger CL, Fletcher CH, Hochberg EH, Frazer N, Rooney JJB (2009) Remote sensing of sand distribution patterns across an insular shelf: Oahu, Hawaii. Mar Geol 267:175–190

    Article  Google Scholar 

  • Costa MBSF, Araújo M, Araújo TCM, Siegle E (2016) Influence of reef geometry on wave attenuation on a Brazilian coral reef. Geomorphology 253:318–327. https://doi.org/10.1016/j.geomorph.2015.11.001

    Article  Google Scholar 

  • D’Agostini DP, Bastos AC, Amado-Filho GM, Vilela CG, Oliveira TCS, Webster JM, Moura RL (2019) Morphology and sedimentology of the shelf-upper slope transition in the Abrolhos continental shelf (east Brazilian margin). Geo-Mar Lett 39(2):117–134. https://doi.org/10.1007/s00367-019-00562-6

    Article  Google Scholar 

  • Dalyander PS, Butman B (2015) Characteristics of storms driving wave-induced seafloor mobility on the U.S. East Coast continental shelf. Cont Shelf Res 104:1–14

    Article  Google Scholar 

  • Dix JK, Lambkin DO, Cazenave PW (2007) Development of a regional sediment mobility model for submerged archaeological sites. English Heritage ALSF project no. 5524. School of Ocean and Earth Science, University of Southampton, U.K. 156pp

  • Dominguez JML, Silva RP, Nunes AS, Freire AFM (2013) The narrow, shallow, low-accommodation shelf of central Brazil: sedimentology, evolution, and human uses. Geomorphology 203:46–59

    Article  Google Scholar 

  • Fenton JD, McKee WD (1990) On calculating the lengths of water waves. Coast Eng 14(1990):499–513

    Article  Google Scholar 

  • Fernandes WG, Goulart FF, Ranieri BD, Coelho MS, Dales K, Boesche N, Bustamante M, Carvalho FA, Carvalho DC, Dirzo R, Fernandes S, Galetti PM Jr, Millan VEG, Mielke C, Ramirez JL, Neves A, Rogass C, Ribeiro SP, Scariot A, Soares-Filho B (2016) Deep into the mud: ecological and socio-economic impacts of the dam breach in Mariana, Brazil. Natureza & Conservação 14(2016):35–45. https://doi.org/10.1016/j.ncon.2016.10.003

    Article  Google Scholar 

  • Friedrichs CT, Wright LD (2004) Gravity-driven sediment transport on the continental shelf: implications for equilibrium profiles near river mouth. Coast Eng 51:795–811

    Article  Google Scholar 

  • Gao S, Collins MB (2014) Holocene sedimentary systems on continental shelves. Mar Geol 352:268–294

    Article  Google Scholar 

  • Genin A, Monismith SG, Reidenbach MA, Yahel G, Koseff JR (2009) Intense benthic grazing of phytoplankton in a coral reef. Limnology and Oceanography 54(3):938–951

    Article  Google Scholar 

  • Gourlay MR (1994) Wave transformation on a coral reef. Coast Eng 23:17–42

    Article  Google Scholar 

  • Griffin JD, Hemer MA, Jones BG (2008) Mobility of sediment grain size distributions on a wave dominated continental shelf, southeastern Australia. Mar Geol 252:13–23

    Article  Google Scholar 

  • Guo J (2002) Simple and explicit solution of wave dispersion equation. Coast Eng 45(2002):71–74

    Article  Google Scholar 

  • Hall-Spencer, J., 1998. Conservation issues relating to maerl beds as habitats for molluscs. Journal of Conchology, Special Publication, n° 2: 271–286

  • Harris PT, Tsuji Y, Marshall JF, Davies PJ, Honda N, Matsuda H (1996) Sand and rhodolith-gravel entrainment on the mid- to outer-shelf under a western boundary current: Fraser Island continental shelf, eastern Australia. Mar Geol 129:313–330

    Article  Google Scholar 

  • Harris PT, Coleman R (1998) Estimating global shelf sediment mobility due to swell waves. Mar Geol 150:171–177

    Article  Google Scholar 

  • Harris CK, Wiberg PL (2001) A two-dimensional, time-dependent model of suspended sediment transport and bed reworking for continental shelves. Comput Geosci 27:675–690

    Article  Google Scholar 

  • Hatje V, Pedreira RMA, Rezende CE, Schettini CAF, Souza GC, Marin DC, Hackspacher PC (2017) The environmental impacts of one of the largest tailing dam failures worldwide. Sci Rep 7:10706. https://doi.org/10.1038/s41598-017-11143-x

    Article  Google Scholar 

  • Hemer MA (2006) The magnitude and frequency of combined flow bed shear stress as a measure of exposure on the Australian continental shelf. Cont Shelf Res 26:1258–1280. https://doi.org/10.1016/j.csr.2006.03.011

    Article  Google Scholar 

  • Houlbrèque F, Ferrier-Pagès C (2009) Heterotrophy in tropical scleractinian corals. Biol Rev 84:1–17. https://doi.org/10.1111/j.1469-185X.2008.00058.x

    Article  Google Scholar 

  • Holthuijsen LH, Booji N, Herbers THS (1989) A prediction model for stationary, short-crested waves in shallow water with ambient currents. Coast Eng J 13:23–54

    Article  Google Scholar 

  • Jell JS, Maxwell WHG, McKellar RG (1965) The significance of the larger Foraminifera in the Heron Island reef sediments. J Paleontol 39(2):273–279

    Google Scholar 

  • Kench PS, Brander RW (2006) Wave processes on coral reef flats: implications for reef geomorphology using Australian case studies. J Coast Res 22:209–223

    Article  Google Scholar 

  • Kim S-C, Wright LD, Kim B-O (1997) The combined effects of synoptic-scale and local-scale meteorological events on bed stress and sediment transport on the inner shelf of the Middle Atlantic Bight. Cont Shelf Res 17(4):407–433

    Article  Google Scholar 

  • Knoppers B, Ekau W, Figueiredo AG (1999) The coast and shelf of east and Northeast Brazil and material transport. Geo-Mar Lett 19:171–178

    Article  Google Scholar 

  • Komar PD (1998) Beach processes and sedimentation, 2nd edn. Prentice Hall 544 p

  • Komar PD, Miller MC (1973) The threshold of sediment under oscillatory water waves. J Sediment Petrol 43(4):1101–1110

    Article  Google Scholar 

  • Lambrechts J, Humphrey C, McKinna L, Gourge O, Fabricius KE, Mehta AJ, Lewis S, Wolanski E, E. (2010) Importance of wave-induced bed liquefaction in the fine sediment budget of Cleveland Bay, Great Barrier Reef. Estuar Coast Shelf Sci 89(2):154–162

    Article  Google Scholar 

  • Leão ZMAN (1982) Morphology, geology and developmental history of the southermost coral reefs of Western Atlantic, Abrolhos Bank, Brazil. Ph.D. Dissertation, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Florida, U.S.A., 218p

  • Leão ZMAN (2002) Abrolhos, BA – O complexo recifal mais extenso do Atlântico Sul. In: Schobbenhaus C, Campos DA, Queiroz ET, Winge M, Berbert-Born MLC (eds) Sítios Geológicos e Paleontológicos do Brasil. 1ed. Brasília: DNPM/CPRM – Comissão Brasileira de Sítios Geológicos e Paleobiológicos, SIGEP 90: 345–359

  • Leão, Z.M.A.N., Dominguez, J.M.L., 2000. Tropical coast of Brazil. Mar Pollut Bull, Vol. 41, n° 1–6, pp.112–122

  • Leão ZMAN, Ginsburg RN (1997) Living reefs surrounded by siliciclastic sediments: the Abrolhos Coastal Reefs, Bahia, Brazil. Procedures 8th. Int. Coral Reef Sym 2: 1767–1772

  • Leão ZMAN, Araujo TMF, Nolasco MC (1988) The coral reefs of the coast of eastern Brazil. Proceedings of the Sixth International Coral Reef Symposium, Townsville, Australia 3:339–347

    Google Scholar 

  • Leão ZMAN, Kikuchi RKP, Maia MP, Lago RAL (1997) A catastrophic coral cover decline since 3.000 years D.P., Northern Bahia, Brazil. Procedures 8th. Int. Coral Reef Sym 1: 583–588

  • Leão ZMAN, Kikuchi RKP, Testa V (2003) Corals and coral reefs of Brazil. In: Cortes J (ed) Latin American coral reefs. Elsevier, Amsterdam, pp 9–52

    Chapter  Google Scholar 

  • Leão ZMAN, Dutra LXC, Spanó S (2005) Characteristics of bottom sediments. In: Dutra GF, Allen GR, Werner T, McKenna SA (eds) A rapid marine biodiversity assessment of the Abrolhos Bank, Bahia, Brazil. RAP Bulletin of Biological, Assessment 38. Chapter 5: 75–81

  • Lowe RJ, Falter JL, Bandet MD, Pawlak G, Atkinson MJ, Monismith SG, Koseff JR (2005) Spectral wave dissipation over a barrier reef. J Geophys Res 110:1–16

    Google Scholar 

  • Ma Y, Friedrichs CT, Harris CK, Wright LD (2010) Deposition by seasonal wave- and current-supported sediment gravity flows interacting with spatially varying bathymetry: Waiapu shelf, New Zealand. Mar Geol 275:199–211

    Article  Google Scholar 

  • Maiklem WR (1968) Some hydraulic properties of bioclastic carbonate grains. Sedimentology 10(2):101–109. https://doi.org/10.1111/j.1365-3091.1968.tb01102.x

  • Martin L, Dominguez JML, Bittencourt ACSP (1998) Climatic control of coastal erosion during a sea-level fall episode. An Acad Bras Ciências 70(2):249–266

    Google Scholar 

  • Martins LR, Coutinho PN (1981) The Braziliam continental margin. Earth Sci Rev 17:87–107

    Article  Google Scholar 

  • Moriarty JM, Harris CK, Hadfield MG (2014) A hydrodynamic and sediment transport model for the Waipaoa Shelf, New Zealand: sensitivity of fluxes to spatially-varying erodibility and model nesting. J Mar Sci Eng 2014(2):336–369

    Article  Google Scholar 

  • Muehe D, Carvalho VG (1993) Geomorfologia, Cobertura sedimentar e Transporte de Sedimentos na Plataforma Continental Interna entre a Ponta de Saquarema e o Cabo Frio (RJ). Boletim do Inst. Oceanográfico, São Paulo, 41 (1/2): 1–12

  • Nielsen P (1982) Explicit formulae for practical wave calculations. Coast Eng 6:389–398

    Article  Google Scholar 

  • Nittrouer CA, Wright LD (1994) Transport of particles across continental shelves. Rev Geophys 32(1):85–113

    Article  Google Scholar 

  • Nittrouer CA, Kuehl SA, Sternberg RW, Figueiredo AG Jr, Faria LEC (1995) An introduction to the geological significance of sediment transport and accumulation on the Amazon continental shelf. Mar Geol 125:177–192

    Article  Google Scholar 

  • Oberle FKJ, Storlazzi CD, Hanebuth TJJ (2014) Wave-driven sediment mobilization on a storm-controlled continental shelf (Northwest Iberia). J Mar Syst 139:362–372

    Article  Google Scholar 

  • Ogston AS, Storlazzi CD, Field ME, Presto MK (2004) Sediment resuspension and transport patterns on a fringing reef flat, Molokai, Hawaii. Coral Reefs 23:559–569

    Google Scholar 

  • Paiva BP, Schettini CAF, Pereira MD, Siegle E, Miranda LB, Andutta FP (2016) Circulation and suspended sediment dynamics in a tropical estuary under different morphological setting. An Acad Bras Cienc 88(3):1265–1276. https://doi.org/10.1590/0001-3765201620150620

    Article  Google Scholar 

  • Pereira AF, Belém AL, Castro BM, Geremias R (2005) Tide-topography interaction along the eastern Brazilian shelf. Cont Shelf Res 25:1521–1539

    Article  Google Scholar 

  • Porter-Smith R, Harris PT, Andersen OB, Coleman R, Greenslade D, Jenkins CJ (2004) Classification of the Australian continental shelf based on predicted sediment threshold exceedance from tidal currents and swell waves. Mar Geol 211:1–20

    Article  Google Scholar 

  • Prager EJ, Southard JB, Vivoni-Gallart ER (1996) Experiments on the entrainment threshold of well-sorted and poorly sorted carbonate sands. Sedimentology 43:33–40

    Article  Google Scholar 

  • Ribes M, Atkinson MJ (2007) Effects of water velocity on picoplankton uptake by coral reef communities. Coral Reefs 26:413–421. https://doi.org/10.1007/s00338-007-0211-4

    Article  Google Scholar 

  • Ryan-Mishkin K, Walsh JP, Corbett DR, Dail MB, Nittrouer JA (2009) Modern sedimentation in a mixed-siliciclastic-carbonate coral reef environment, La Parguera, Puerto Rico. Caribb J Sci 45(2–3):151–167

    Article  Google Scholar 

  • Schettini CAF, Pereira MD, Siegle E, Miranda LB, Silva MP (2013) Residual fluxes of suspended sediment in a tidally dominated tropical estuary. Cont Shelf Res 70:27–35

    Article  Google Scholar 

  • Scully ME, Friedrichs CT, Wright LD (2003) Numerical modeling of gravity-driven sediment transport and deposition on an energetic continental shelf: Eel River, northern California. J Geophys Res 108(C4):3120: (17–1 – 17-14). https://doi.org/10.1029/2002JC001467

    Article  Google Scholar 

  • Siegle E, Costa MBSF (2017) Nearshore wave power increase on reef shaped coasts due to sea-level rise. Earth’s Future 5(10):1054–1065. https://doi.org/10.1002/2017EF000624

    Article  Google Scholar 

  • Silva AS, Leão ZMAN, Kikuchi RKP, Costa AB, Souza JRB (2013) Sedimentation in the coastal reefs of Abrolhos over the last decades. Cont. Shelf Res. 70:159–167. https://doi.org/10.1016/j.csr.2013.06.002

    Article  Google Scholar 

  • Soulsby R (1997) Dynamics of marine sands: a manual for practical applications. Thomas Telford Services Limited, London, 249p

    Google Scholar 

  • Storlazzi CD, Reid JA (2010) The influence of El Niño-Southern Oscillation (ENSO) cycles on wave-driven sea-floor sediment mobility along the central California continental margin. Cont Shelf Res 30:1582–1599

    Article  Google Scholar 

  • Storlazzi CD, Ogston AS, Bothner MH, Field ME, Presto MK (2004) Wave- and tidally-driven flow and sediment flux across a fringing coral reef: Southern Molokai, Hawaii. Cont Shelf Res 24:1397–1419

    Article  Google Scholar 

  • Tolman HL (1999) User manual and system documentation of WaveWatch-III version 1.18. NOAA/NWS/NCEP/OMB. Tech. Note 166. 110p. Available in: http://polar.ncep.noaa.gov/wwaves/wavewatch

  • Wheatcroft RA, Sommerfield CK (2005) River sediment flux and shelf sediment accumulation rates on the Pacific Northwest margin. Cont Shelf Res 25:311–332

    Article  Google Scholar 

  • Wiberg PL, Sherwood CR (2008) Calculating wave-generated bottom orbital velocities from surface-wave parameters. Comput Geosci 34:1167–1416

    Article  Google Scholar 

  • Wolanski E (1994) Physical oceanographic processes of the Great Barrier Reef. CRC Press, Boca Raton, p 194

    Google Scholar 

  • Wright LD, Kim S-C, Friedrichs CT (1999) Across-shelf variations in bed roughness, bed stress and sediment suspension on the northern California shelf. Mar Geol 154:99–115

    Article  Google Scholar 

  • Wright LD, Friedrichs CT, Kim S-C, Scully ME (2001) Effects of ambient currents and waves on gravity-driven sediment transport on continental shelves. Mar Geol 175:25–45

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the scholarship provided to Ana Amelia Lavenère-Wanderley. Eduardo Siegle is a CNPq research fellow. Authors are grateful to Fibria that provided the measured wave data used in the numerical model calibration. These data were obtained by Fibria through monitoring programs required by the Federal Environmental Licensing process (IBAMA). The authors also thank DHI for making the numerical model MIKE21 available for this study.

Funding

The study was also partially funded by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES - Finance Code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Siegle.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavenère-Wanderley, A.A., Siegle, E. Wave-induced sediment mobility on a morphologically complex continental shelf: eastern Brazilian shelf. Geo-Mar Lett 39, 349–361 (2019). https://doi.org/10.1007/s00367-019-00580-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-019-00580-4

Navigation