Skip to main content

Advertisement

Log in

Spatial and temporal scales of shoreline morphodynamics derived from video camera observations for the island of Sylt, German Wadden Sea

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Spatial and temporal scales of beach morphodynamics were assessed for the island of Sylt, German Wadden Sea, based on continuous video camera monitoring data from 2011 to 2014 along a 1.3 km stretch of sandy beach. They served to quantify, at this location, the amount of shoreline variability covered by beach monitoring schemes, depending on the time interval and alongshore resolution of the surveys. Correlation methods, used to quantify the alongshore spatial scales of shoreline undulations, were combined with semi-empirical modelling and spectral analyses of shoreline temporal fluctuations. The data demonstrate that an alongshore resolution of 150 m and a monthly survey time interval capture 70% of the kilometre-scale shoreline variability over the 2011–2014 study period. An alongshore spacing of 10 m and a survey time interval of 5 days would be required to monitor 95% variance of the shoreline temporal fluctuations with steps of 5% changes in variance over space. Although monitoring strategies such as land or airborne surveying are reliable methods of data collection, video camera deployment remains the cheapest technique providing the high spatiotemporal resolution required to monitor subkilometre-scale morphodynamic processes involving, for example, small- to middle-sized beach nourishment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahrendt K (2001) Expected effect of climate change on Sylt island: results from a multidisciplinary German project. Climate Res 18(1):141–146. doi:10.3354/cr018141

    Article  Google Scholar 

  • Ahrendt K, Köster R (1996) An artificial longshore bar at the west coast of the island of Sylt/German Bight: first experiences. J Coastal Res 12(1):354–367

    Google Scholar 

  • Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81(2):169–193. doi:10.1890/10-1510.1

    Article  Google Scholar 

  • Battjes J (1974) Surf similarity. In: Proc 14th Conf Coastal Engineering. American Society of Civil Engineers, New York, pp 466–480

    Google Scholar 

  • Blossier B, Bryan KR, Daly CJ, Winter C (2016) Nearshore sandbar rotation at single-barred embayed beaches. J Geophys Res Oceans 121(4):2286–2313. doi:10.1002/2015JC011031

    Article  Google Scholar 

  • Bryan KR, Foster R, MacDonald I (2013) Beach rotation at two adjacent headland-enclosed beaches. In: Conley DC, Masselink G, Russell PE, O’Hare TJ (eds) Proc 12th Int Coastal Symposium (Plymouth, England). J Coastal Res SI 65:2095–2100. doi:10.2112/SI65-354.1

    Article  Google Scholar 

  • Casella E, Rovere A, Pedroncini A, Stark CP, Casella M, Ferrari M, Firpo M (2016) Drones as tools for monitoring beach topography changes in the Ligurian Sea (NW Mediterranean). Geo-Mar Lett 36(2):151–163. doi:10.1007/s00367-016-0435-9

    Article  Google Scholar 

  • Castelle B, Marieu V, Bujan S, Ferreira S, Parisot JP, Capo S, Sénéchal N, Chouzenoux T (2014) Equilibrium shoreline modelling of a high-energy meso-macrotidal multiple-barred beach. Mar Geol 347:85–94. doi:10.1016/j.margeo.2013.11.003

    Article  Google Scholar 

  • Daly CJ, Winter C, Bryan KR (2015) On the morphological development of embayed beaches. Geomorphology 248:252–263. doi:10.1016/j.geomorph.2015.07.040

    Article  Google Scholar 

  • Davidson M, Lewis R, Turner I (2010) Forecasting seasonal to multi-year shoreline change. Coastal Eng 57(6):620–629. doi:10.1016/j.coastaleng.2010.02.001

    Article  Google Scholar 

  • Davidson M, Splinter K, Turner I (2013) A simple equilibrium model for predicting shoreline change. Coastal Eng 73:191–202. doi:10.1016/j.coastaleng.2012.11.002

    Article  Google Scholar 

  • Durán Vinent O, Moore LJ (2015) Barrier island bistability induced by biophysical interactions. Nature Climate Change 5(2):158–162. doi:10.1038/nclimate2474

    Article  Google Scholar 

  • Ebbesen S, Kiwitz P, Guzzella L (2012) A generic particle swarm optimization Matlab function. In: American Control Conference (ACC). Montréal, Canada, pp 1519–1524. doi:10.1109/ACC.2012.6314697

    Google Scholar 

  • Grasso F, Michallet H, Barthélemy E (2011) Sediment transport associated with morphological beach changes forced by irregular asymmetric, skewed waves. J Geophys Res Oceans 116(C03020). doi:10.1029/2010JC006550

  • Hanson H, Brampton A, Capobianco M, Dette H, Hamm L, Laustrup C, Lechuga A, Spanhoff R (2002) Beach nourishment projects, practices, and objectives – a European overview. Coastal Eng 47(2):81–111. doi:10.1016/S0378-3839(02)00122-9

    Article  Google Scholar 

  • Harley MD, Turner IL, Short AD, Ranasinghe R (2011) Assessment and integration of conventional, RTK-GPS and image-derived beach survey methods for daily to decadal coastal monitoring. Coastal Eng 58(2):194–205. doi:10.1016/j.coastaleng.2010.09.006

    Article  Google Scholar 

  • Heikkila J, Silven O (1997) A four-step camera calibration procedure with implicit image correction. Proc IEEE Computer Society Conf Computer Vision and Pattern Recognition 1997:1106–1112. doi:10.1109/CVPR.1997.609468

    Article  Google Scholar 

  • Herrling G, Winter C (2014) Morphological and sedimentological response of a mixed-energy barrier island tidal inlet to storm and fair-weather conditions. Earth Surf Dyn 2(1):363

    Article  Google Scholar 

  • Holman R, Stanley J (2007) The history and technical capabilities of Argus. Coastal Eng 54(6-7):477–491. doi:10.1016/j.coastaleng.2007.01.003

    Article  Google Scholar 

  • Holman R, Lippmann T, O’Neill P, Hathaway K (1991) Video estimation of subaerial beach profiles. Mar Geol 97(1-2):225–231. doi:10.1016/0025-3227(91)90028-3

    Article  Google Scholar 

  • Huisman B, Sirks E, van der Valk L, Walstra D (2014) Time and spatial variability of sediment grading in the surfzone of a large scale nourishment. In: Green AN, Cooper JAG (eds) Proc 13th Int Coastal Symposium, Durban, South Africa. J Coastal Res SI 70:127–134. doi:10.2112/SI70-022.1, 10.2112/SI70-022.1

  • Lee JM, Park JY, Choi JY (2013) Evaluation of sub-aerial topographic surveying techniques using total station and RTK-GPS for applications in macrotidal sand beach environment. In: Conley DC, Masselink G, Russell PE, O’Hare TJ (eds) Proc 12th Int Coastal Symposium, Plymouth, England. J Coastal Res SI 65:535–540. doi:10.2112/SI65-091.1

    Article  Google Scholar 

  • Lindhorst S, Betzler C, Hass HC (2008) The sedimentary architecture of a Holocene barrier spit (Sylt, German Bight): swash-bar accretion and storm erosion. Sediment Geol 206(1-4):1–16. doi:10.1016/j.sedgeo.2008.02.008

    Article  Google Scholar 

  • Lippmann T, Holman R (1990) The spatial and temporal variability of sand bar morphology. J Geophys Res 95(C7):11,575–11,590

    Article  Google Scholar 

  • Miller JK, Dean RG (2004) A simple new shoreline change model. Coastal Eng 51(7):531–556. doi:10.1016/j.coastaleng.2004.05.006

    Article  Google Scholar 

  • Miller JK, Dean RG (2006) An engineering scale model for predicting the shoreline response to variations in waves and water levels. In: Proc 7th Int Conf HydroScience and Engineering, vol 30, p 3554

  • Ojeda E, Guillén J (2008) Shoreline dynamics and beach rotation of artificial embayed beaches. Mar Geol 253(1-2):51–62. doi:10.1016/j.margeo.2008.03.010

    Article  Google Scholar 

  • Plant NG, Aarninkhof SGJ, Turner IL, Kingston KS (2007) The performance of shoreline detection models applied to video imagery. J Coastal Res 23(3):658–670. doi:10.2112/1551-5036(2007)23[658:TPOSDM]2.0.CO;2, 10.2112/1551-5036(2007)23[658:TPOSDM]2.0.CO;2

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in fortran 77: the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  • Ružić I, Marović I, Benac Č, Ilić S (2014) Coastal cliff geometry derived from structure-from-motion photogrammetry at Stara Baška, Krk Island, Croatia. Geo-Mar Lett 34(6):555–565. doi:10.1007/s00367-014-0380-4

    Article  Google Scholar 

  • Sallenger AH, Krabill WB, Swift RN, Brock J, List J, Hansen M, Holman RA, Manizade S, Sontag J, Meredith A, Morgan K, Yunkel JK, Frederick EB, Stockdon H (2003) Evaluation of airborne topographic lidar for quantifying beach changes. J Coastal Res 19(1):125–133

    Google Scholar 

  • Sancho-García A, Guillén J, Ojeda E (2013) Storm-induced readjustment of an embayed beach after modification by protection works. Geo-Mar Lett 33(2):159–172. doi:10.1007/s00367-012-0319-6

    Article  Google Scholar 

  • Sénéchal N, Coco G, Castelle B, Marieu V (2015) Storm impact on the seasonal shoreline dynamics of a meso- to macrotidal open sandy beach (Biscarrosse, France). Geomorphology 228:448–461. doi:10.1016/j.geomorph.2014.09.025

    Article  Google Scholar 

  • Smith R, Bryan K (2007) Monitoring beach face volume with a combination of intermittent profiling and video imagery. J Coastal Res 23(4):892–898. doi:10.2112/04-0287.1

    Article  Google Scholar 

  • Splinter KD, Holman RA, Plant NG (2011) A behavior-oriented dynamic model for sandbar migration and 2DH evolution. J Geophys Res Oceans 116(C01020). doi:10.1029/2010JC006382

  • Stockdon HF, Holman RA, Howd PA, Sallenger AH Jr (2006) Empirical parameterization of setup, swash, and runup. Coastal Eng 53(7):573–588. doi:10.1016/j.coastaleng.2005.12.005

    Article  Google Scholar 

  • Turki I, Medina R, Kakeh N, González M (2015) Shoreline relaxation at pocket beaches. Ocean Dyn 65(9):1221–1234. doi:10.1007/s10236-015-0869-z

    Article  Google Scholar 

  • van de Lageweg W, Bryan K, Coco G, Ruessink B (2013) Observations of shoreline-sandbar coupling on an embayed beach. Mar Geol 344:101–114. doi:10.1016/j.margeo.2013.07.018

    Article  Google Scholar 

  • Winter C (2011) Macro scale morphodynamics of the German North Sea coast. In: Proc 11th Int Coastal Symposium, Szczecin, Poland. J Coastal Res SI 64:706–710

    Google Scholar 

  • Winter C, Herrling G, Bartholomä A, Capperucci R, Callies U, Heipke C, Schmidt A, Hillebrand H, Reimers C, Bremen P, Weiler R (2014) Scientific concepts for monitoring the ecological state of German coastal seas (in German). Wasser und Abfall 07–08(2014):21–26. doi:10.1365/s35152-014-0685-7

    Article  Google Scholar 

  • Wright L, Short A (1984) Morphodynamic variability of surf zones and beaches: a synthesis. Mar Geol 56(1-4):93–118. doi:10.1016/0025-3227(84)90008-2

    Article  Google Scholar 

  • Yates ML, Guza RT, O’Reilly WC (2009) Equilibrium shoreline response: observations and modeling. J Geophys Res Oceans 114(C09014). doi:10.1029/2009JC005359

Download references

Acknowledgements

This study was funded through the DFG-Research Center for Marine Environmental Sciences MARUM. C. Daly acknowledges funding from the Hanse-Wissenschaftskolleg as a Junior Fellow in the project WIMO (Wissenschaftliche Monitoringkonzepte für die Deutsche Bucht). The authors gratefully acknowledge the Helmholtz-Zentrum Geesthacht (HZG) for hosting the video camera system and for graciously providing wave buoy and wave model data via the COSYNA project (Coastal Observation Systems in the North Sea and Arctic, http://www.hzg.de/institutes_platforms/cosyna). Additional wave buoy data were provided by the Federal Maritime and Hydrographic Agency (BSH), and additional wave model data originate from the Deutscher Wetterdienst DWD model. Tidal data were provided by the Federal Administration of Waterways and Navigation (Wasser- und Schifffahrtsverwaltung des Bundes, WSV) and the German Federal Institute of Hydrology (BfG). The authors would like to thank two anonymous reviewers whose comments helped clarifying this manuscript.

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brice Blossier.

Additional information

Responsible editor: B.W. Flemming

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blossier, B., Bryan, K.R., Daly, C.J. et al. Spatial and temporal scales of shoreline morphodynamics derived from video camera observations for the island of Sylt, German Wadden Sea. Geo-Mar Lett 37, 111–123 (2017). https://doi.org/10.1007/s00367-016-0461-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-016-0461-7

Keywords

Navigation