Skip to main content
Log in

Hydrothermal signature in ferromanganese oxide coatings on pumice from the Central Indian Ocean Basin

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Mineralogical and elemental analyses of 20 ferromanganese (FeMn)-coated pumice samples from the Central Indian Ocean Basin (CIOB) indicate that todorokite is the major mineral phase, whereas vernadite occurs only rarely. Based on major, trace and rare earth elements (REEs) as well as Ce anomalies, the sources of the FeMn oxides were identified to be either hydrogenous, hydrothermal-plume fallout, diagenetic or a combination of these. Plots of Fe/Mn vs. Ce or Co reveal a distinct demarcation of the diagenetic, hydrogenous and plume fallout samples. Five samples are interpreted to be of hydrothermal origin because these show negative Ce anomalies and low Co/Zn ratios (0.5 to 1.1), and are masked by diagenesis. The relative contributions of hydrogenous, hydrothermal and diagenetic inputs were assessed in terms of ternary mixing patterns using REE mass balance equations. Furthermore, the hypothetical Ce anomaly (Ce/Ce*) was calculated using ternary mixing calculations for hydrogenous, hydrothermal and diagenetic end-members to ascertain the input to FeMn oxides on the pumice samples. This revealed a distinction between hydrogenous and hydrothermal components but diagenetic and plume fallout components could not be distinguished because this scheme comprises a three end-member calculation. A conservative estimate indicates the hydrothermal component to vary between 24% and 72%. The growth rates of the oxides, as estimated from published empirical methods, range between 3 and 47 mm/106 years. Fe/Mn ratios yielded a maximum age of 5–7 Ma and a minimum of 0.04–0.1 Ma. This suggests that the commencement of accretion of the FeMn oxides generally precedes the age of the Krakatau 1883 eruption, which is commonly considered as being the prime source of pumice to the CIOB. This is the first evidence of hydrothermal influence in the formation of FeMn oxides on CIOB pumice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Albarède F (1995) Introduction to geochemical modeling. Cambridge University Press, New York, pp 1–50

    Book  Google Scholar 

  • Balaram V, Rao TG (2003) Rapid determination of REEs and other trace elements in geological samples by microwave acid digestion and ICP-MS. Atomic Spectros 24:206–212

    Google Scholar 

  • Banakar VK, Borole DV (1989) Growth rate and chemical composition of a manganese nodule from the EEZ of Seychelles. J Geol Soc India 33:253–258

    Google Scholar 

  • Banakar VK, Sudhakar M (1988) Ferro-manganese oxide growth on shark teeth from Central Indian Ocean Basin. Indian J Mar Sci 17:265–269

    Google Scholar 

  • Banerjee R, Mukhopadhyay R (1991) Nature and distribution of manganese nodules from three sediment domains of the Central Indian Basin, Indian Ocean. Geo-Mar Lett 11:39–43

    Article  Google Scholar 

  • Binns RA (2003) Deep marine pumice from the Woodlark and Manus Basins, Papua New Guinea. In: White JDL, Smellie JL, Clague DA (eds) Explosive subaqueous volcanism. AGU, Washington, DC, Geophys Monogr Ser 140:329–343

  • Bodeï S, Manceau A, Geoffroy N, Baronnet A, Buatier M (2007) Formation of todorokite from vernadite in Ni-rich hemipelagic sediments. Geochim Cosmochim Acta 71:5698–5716

    Article  Google Scholar 

  • Burns RG, Burns VM (1979) Manganese oxides. In: Burns RG (ed) Marine minerals. Mineral Soc Am Short Course Notes 6:1–46

  • Burns RG, Burns VM, Stockman H (1983) A review of the todorokite-buserite problem: implications to the mineralogy of marine manganese nodules. Am Mineral 68:972–980

    Google Scholar 

  • Calvert SE, Price NB (1977) Geochemical variation in ferromanganese nodules and associated sediment from the Pacific Ocean. Mar Chem 5:43–74

    Article  Google Scholar 

  • Canet C, Prol-Ledesma RM, Bandy WL, Schaaf P, Linares C, Camprubí A, Tauler E, Mortera-Gutiérrez C (2008) Mineralogical and geochemical constraints on the origin of ferromanganese crusts from the Rivera Plate (western margin of Mexico). Mar Geol 251:47–59

    Article  Google Scholar 

  • Chavagnac V, German CR, Milton JA, Palmer MR (2005) Sources of REE in sediment cores from the Rainbow vent site (36°14’N, MAR). Chem Geol 216:329–352

    Article  Google Scholar 

  • Chesner CA (1998) Petrogenesis of the Toba tuffs, Sumatra, Indonesia. J Petrol 39:397–438

    Article  Google Scholar 

  • Crerar DA, Barnes HL (1974) Deposition of deep sea manganese nodules. Geochim Cosmochim Acta 38:279–300

    Article  Google Scholar 

  • Cronan DS (1980) Manganese nodules and encrustations. In: Cronan DS (ed) Underwater minerals. Academic Press, New York, pp 61–166

    Google Scholar 

  • Cronan DS, Moorby SA (1981) Manganese nodules and ferromanganese oxide deposits from the Indian Ocean. J Geol Soc Lond 138:527–539

    Article  Google Scholar 

  • Das P, Iyer SD, Kodagali VN (2007) Morphological characteristics and emplacement mechanism of the seamounts in the Central Indian Ocean Basin. Tectonophysics 443:1–18

    Article  Google Scholar 

  • Das A, Fernandes CEG, Naik S, Nath BN, Suresh I, Mascarenhas-Pereira MBL, Gupta SM, Khadge NH, Prakash Babu C, Borole DV, Sujith PP, Valsangkar AB, Mourya BS, Biche SU, Sharma R, LokaBharathi PA (2011) Bacterial response to contrasting sediment geochemistry in the Central Indian Basin. Sedimentology 58:756–784

    Article  Google Scholar 

  • Dekov VM, Marchig V, Rajta I, Uzony I (2003) Fe-Mn micronodules born in the metalliferous sediments of two spreading centres: the East Pacific Rise and Mid-Atlantic Ridge. Mar Geol 199:101–121

    Article  Google Scholar 

  • Elderfield H, Greaves MJ (1981) Negative cerium anomalies in the rare earth element patterns of the oceanic ferromanganese nodules. Earth Planet Sci Lett 55:163–170

    Article  Google Scholar 

  • Elderfield H, Hawkesworth CJ, Greaves MJ, Calvert SE (1981) Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments. Geochim Cosmochim Acta 45:513–528

    Article  Google Scholar 

  • Glasby GP (1972) The mineralogy of manganese nodules from a range of marine environments. Mar Geol 13:57–72

    Article  Google Scholar 

  • Glasby GP, Gwozdz R, Kunzendorf H, Friedrich G, Thijssen T (1987) The distribution of rare earth and minor elements in manganese nodules and sediments from the equatorial and SW Pacific. Lithos 20:97–113

    Article  Google Scholar 

  • Glasby GP, Stüben D, Jeschke G, Stoffers P, Garbe-Schönberg CD (1997) A model for the formation of hydrothermal manganese crusts from the Pitcairn Island hotspot. Geochim Cosmochim Acta 61:4583–4597

    Article  Google Scholar 

  • Halbach P, Scherhag C, Hebisch U, Marchig V (1981) Geochemical and mineralogical control of different genetic types of deep-sea nodules from the Pacific Ocean. Miner Deposita 16:59–84

    Article  Google Scholar 

  • Halbach P, Segl M, Puteanus D, Mangini A (1983) Co-fluxes and growth rates in ferromanganese deposits from central Pacific seamount areas. Nature 304:716–719

    Article  Google Scholar 

  • Iyer SD (1991) Comparison of internal features and microchemistry of ferromanganese crusts from the Central Indian Basin. Geo-Mar Lett 11:44–50

    Article  Google Scholar 

  • Iyer SD (1999) Ferromanganese oxides on sharks’ teeth from Central Indian Ocean Basin. Indian J Mar Sci 28:263–269

    Google Scholar 

  • Iyer SD (2005) Evidences for incipient hydrothermal event (s) in the Central Indian Basin: a review. Acta Geol Sinica 79:77–86

    Article  Google Scholar 

  • Iyer SD, Karisiddaiah SM (1988) Morphology and petrography of pumice from the Central Indian Ocean Basin. Indian J Mar Sci 17:333–334

    Google Scholar 

  • Iyer SD, Sudhakar M (1993) Co-existence of pumice and manganese nodule fields- evidence for submarine silicic volcanism in the Central Indian Basin. Deep-Sea Res 40:1123–1129

    Article  Google Scholar 

  • Iyer SD, Prasad MS, Gupta SM, Charan SN (1997) Evidence for recent hydrothermal activity in the Central Indian Basin. Deep-Sea Res 44:1167–1184

    Article  Google Scholar 

  • Iyer SD, Gupta SM, Charan SN, Mills OP (1999) Volcanogenic-hydrothermal iron-rich materials from the southern part of the Central Indian Ocean Basin. Mar Geol 158:15–25

    Article  Google Scholar 

  • Iyer SD, Mascarenhas-Pereira MBL, Nath BN (2007) Native aluminium (spherules and particles) in the central Indian Basin sediments: implications on the occurrence of hydrothermal events. Mar Geol 240:177–184

    Article  Google Scholar 

  • Kalangutkar NG (2012) Petrology and petrochemistry of pumices from Central Indian Ocean Basin. PhD Thesis, Goa University, India

  • Kalangutkar NG, Iyer SD, Ilangovan D (2011) Physical properties, morphology and petrological characteristics of pumices from the Central Indian Ocean Basin. Acta Geol Sinica 85:826–839

    Article  Google Scholar 

  • Koschinsky A, Hein JR (2003) Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation. Mar Geol 198:331–351

    Article  Google Scholar 

  • Kuhn T, Bau M, Blum N, Halbach P (1998) Origin of negative Ce anomalies in mixed hydrothermal–hydrogenetic Fe–Mn crusts from the Central Indian Ridge. Earth Planet Sci Lett 163:207–220

    Article  Google Scholar 

  • Kuhn T, Bostwick BC, Koschinsky A, Halbach P, Fendorf S (2003) Unusual enrichment of Mo in hydrothermal Mn precipitates: possible sources, formation and phase associations. Chem Geol 199:29–43

    Article  Google Scholar 

  • Lyle M (1982) Estimating growth rates of ferromanganese nodules from chemical compositions: implications for nodule formation processes. Geochim Cosmochim Acta 46:2301–2306

    Article  Google Scholar 

  • Manheim FT, Lane-Bostwick CM (1988) Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific seafloor. Nature 335:59–62

    Article  Google Scholar 

  • Martin-Barajas A, Lallier-Verges E (1993) Ash layers and pumice in the Central Indian Basin: relationship to the formation of manganese nodules. Mar Geol 115:307–329

    Article  Google Scholar 

  • Mascarenhas-Pereira MBL, Nath BN, Borole DV, Gupta SM (2006) Nature, source and composition of volcanic ash in sediments from a fracture zone trace of Rodriguez Triple Junction in the Central Indian Basin. Mar Geol 229:79–90

    Article  Google Scholar 

  • Mascarenhas-Pereira MBL, Nath BN (2010) Selective leaching studies of sediments from a seamount flank in the Central Indian Basin: resolving hydrothermal, volcanogenic and terrigenous sources using major, trace and rare-earth elements. Mar Chem 121:49–66

    Article  Google Scholar 

  • Mills RA, Wells DM, Roberts S (2001) Genesis of ferromanganese crusts from the TAG hydrothermal field. Chem Geol 176:283–293

    Article  Google Scholar 

  • Mudholkar A, Fujii T (1995) Fresh pumice from the Central Indian Basin: a Krakatau 1883 signature. Mar Geol 125:143–151

    Article  Google Scholar 

  • Mukherjee AD, Iyer SD (1999) Synthesis of the morphotectonics and volcanic of the Central Indian Ocean Basin. Curr Sci 76:296–304

    Google Scholar 

  • Mukhopadhyay R, Ghosh AK, Iyer SD (2008) The Indian Ocean nodule field: geology and resource potential. In: Hale M (ed) Handbook of Exploration and Environmental Geochemistry, vol 10, seriesth edn. Elsevier, Amsterdam, pp 155–224

    Google Scholar 

  • Nath BN (1993) Rare earth element geochemistry of the sediments, ferromanganese nodule and crusts from the Indian Ocean. PhD Thesis, Goa University, India

  • Nath BN (2007) Processes of formation of ferromanganese nodules and crusts. In: Refresher Course on Marine Geology and Geophysics (22nd October to 2nd November 2007). National Institute of Oceanography, Dona Paula, Goa, Lecture Notes, pp 63–69

  • Nath BN, Balaram V, Sudhakar M, Plüger WL (1992) Rare earth element geochemistry of the ferromanganese deposits from the Indian Ocean. Mar Chem 38:185–208

    Article  Google Scholar 

  • Nath BN, Roelandts I, Sudhakar M, Plüger WL, Balaram V (1994) Cerium anomaly variation in ferromanganese nodules and crusts from the Indian Ocean. Mar Geol 120:385–400

    Article  Google Scholar 

  • Nath BN, Plüger WL, Roelandts I (1997) Geochemical constraints on the hydrothermal origin of ferromanganese encrustations from the Rodriguez Triple Junction, Indian Ocean. In: Nicholson K, Hein JR, Bühn B, Dasgupta S (eds) Manganese mineralization: geochemistry and mineralogy of terrestrial and marine deposits. Geol Soc Spec Publ 119:192–221

  • Nath BN, Borole DV, Aldahan A, Patil SK, Mascarenhas-Pereira MBL, Possnert G, Ericsson T, Ramaswamy V, Gupta SM (2008) 210Pb, 230Th, and 10Be in Central Indian Basin seamount sediments: signatures of degassing and hydrothermal alteration of recent origin. Geophys Res Lett 35, L09603. doi:10.1029/2008GL033849

    Article  Google Scholar 

  • Nayak B, Das SK, Munda P (2013) Biogenic signature and ultra microfossils in ferromanganese nodules of the Central Indian Ocean Basin. J Asian Earth Sci 73:296–305

    Article  Google Scholar 

  • Pattan JN, Mudholkar AV, Jai Sankar S, Ilangovan D (2008) Drift pumice in the Central Indian Ocean Basin: geochemical evidence. Deep-Sea Res I 55:369–378

    Article  Google Scholar 

  • Pattan JN, Pearce NJG, Parthiban G, Smith VC, Mudholkar AV, Rao NR (2013) The origin of ferro-manganese oxide coated pumice from the Central Indian Ocean Basin. Quat Int 313–314:230–239

    Article  Google Scholar 

  • Prasad MS (1994) Australasian microtektites in a substrate: a new constraint on ferromanganese crust accumulation rates. Mar Geol 116:259–266

    Article  Google Scholar 

  • Sarkar C, Iyer SD, Hazra S (2008) Inter-relationship between nuclei and gross characteristics of manganese nodules, Central Indian Ocean Basin. Mar Georesources Geotechnol 26:259–289

    Article  Google Scholar 

  • Sharma P, Somayajulu BLK (1987) Composition, mineralogy and depositional history of nodules from world oceans. In: Rao TSS, Natarajan R, Desai BN, Narayanaswamy G, Bhat SR (eds) Contributions in Marine Sciences, Dr. S.Z. Qasim, Sastyabdapurti felicitation volume. National Institute of Oceanography, Goa, India, pp 355–390

    Google Scholar 

  • Sharma R, Sankar SJ, Samanta S, Sardar AA, Gracious D (2010) Image analysis of seafloor photographs for estimation of deep-sea minerals. Geo-Mar Lett 30:617–626

    Article  Google Scholar 

  • Sudhakar M, Iyer SD, Mislankar PG (1992) Does pumice control on the characteristics and distribution of ferromanganese nodules in the Central Indian Basin? In: Abstr Vol 29th Int Geology Congr, 24 August–3 September 1992, Kyoto, Japan, p 606

  • Sukumaran NP, Banerjee R, Borole DV, Gupta SM (1999) Some aspects of volcanic ash layers in the Central Indian Basin. Geo-Mar Lett 18:203–208

    Article  Google Scholar 

  • Takahashi Y, Manceau A, Geoffroy N (2007) Chemical and structural control of the partitioning of Co, Ce, and Pb in marine ferromanganese oxides. Geochim Cosmochim Acta 71:984–1008

    Article  Google Scholar 

  • Toth JR (1980) Deposition of submarine crusts rich in manganese and iron. Geol Soc Am Bull 91:44–54

    Article  Google Scholar 

  • Usui A, Bau M, Yamazaki T (1997) Manganese microchimneys buried in the Central Pacific pelagic sediments: evidence of intraplate water circulation? Mar Geol 141:269–285

    Article  Google Scholar 

  • Vallier TL, Kidd RB (1977) Volcanogenic sediments in the Indian Ocean. In: Heirtzler JR, Bolli HM, Davies TA, Saunders JB, Sclater JG (eds) Indian Ocean geology and biostratigraphy studies following DSD legs 22-29. American Geophysical Union, Washington, pp 87–118

    Chapter  Google Scholar 

  • Vineesh TC, Nath BN, Banerjee R, Jaisankar S, Lekshmi V (2009) Manganese nodule morphology as indicators for oceanic processes in the Central Indian Basin. Int Geol Rev 51:27–44

    Article  Google Scholar 

  • Wang X, Schröder HC, Schloßmacher U, Müller WEG (2009) Organized bacterial assemblies in manganese nodules: evidence for a role of S-layers in metal deposition. Geo-Mar Lett 29:85–91

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Directors for permission to publish this paper. We acknowledge the help received from V.K. Banakar and G. Parthiban (ICP-OES), V. Khedekar (SEM-EDS), G. Prabhu (XRD), B. Vijay Kumar (access to sample repository), S. Jai Sankar (sample locations), and T.G. Rao and M. Satyanarayanan (ICP-MS; National Geophysical Research Institute, Hyderabad). We are obliged to two anonymous reviewers for thoughtful comments that helped to substantially improve the article, and to the editors for their useful feedback. This work is a part of N.K.’s Ph.D. thesis, with financial assistance via the CSIR (New Delhi) Fellowship scheme. This is NIO’s contribution No. 5717.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niyati G. Kalangutkar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1208 kb)

ESM 2

(PDF 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalangutkar, N.G., Iyer, S.D., Mascarenhas-Pereira, M.B.L. et al. Hydrothermal signature in ferromanganese oxide coatings on pumice from the Central Indian Ocean Basin. Geo-Mar Lett 35, 221–235 (2015). https://doi.org/10.1007/s00367-015-0402-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-015-0402-x

Keywords

Navigation