Skip to main content

Advertisement

Log in

Acoustic evidence of a submarine slide in the deepest part of the Arctic, the Molloy Hole

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

The western Svalbard continental margin contains thick sediment sequences with areas known to contain gas hydrates. Together with a dynamic tectonic environment, this makes the region prone to submarine slides. This paper presents results from geophysical mapping of the deepest part of the high Arctic environment, the Molloy Hole. The mapping includes multibeam bathymetry, acoustic backscatter and sub-bottom profiling. The geophysical data reveal seabed features indicative of sediment transport and larger-scale mass wasting. The large slide scar is here referred to as the Molloy Slide. It is located adjacent to the prominent Molloy Hole and Ridge system. The slide is estimated to have transported >65 km3 of sediments over the deep axial valley of the Molloy Ridge, and further into the Molloy Hole. A unique feature of this slide is that, although its run-out distance is relatively short (<5 km), it extends over an enormous vertical depth (>2,000 m) as a result of its position in a complex bathymetric setting. The slide was most likely triggered by seismic activity caused by seafloor spreading processes along the adjacent Molloy Ridge. However, gas-hydrate destabilization may also have played a role in the ensuing slide event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Antobreh A, Krastel S (2006) Mauritania Slide Complex: morphology, seismic characterisation and processes of formation. Int J Earth Sci 96:451–472. doi:10.1007/s00531-006-0112-8

    Article  Google Scholar 

  • Batchelor CL, Dowdeswell JA (2013) The physiography of High Arctic cross-shelf troughs. Quat Sci Rev (in press). doi:10.1016/j.quascirev.2013.05.025

  • Beget JE, Addison JA (2007) Methane gas release from the Storegga submarine landslide linked to early Holocene climate change: a speculative hypothesis. The Holocene 17:291–295. doi:10.1177/0959683607076435

    Article  Google Scholar 

  • Berndt C, Brune S, Nisbet E, Zschau J, Sobolev SV (2009) Tsunami modeling of a submarine landslide in the Fram Strait. Geochem Geophys Geosyst 10, Q04009. doi:10.1029/2008GC002292

    Article  Google Scholar 

  • Bondevik S, Løvholt F, Harbitz C, Mangerud J, Dawson A, Svendsen JI (2005) The Storegga Slide tsunami—comparing field observations with numerical simulations. Mar Pet Geol 22:195–208. doi:10.1016/j.marpetgeo.2004.10.003

    Article  Google Scholar 

  • Bryn P, Berg K, Forsberg CF, Solheim A, Kvalstad TJ (2005) Explaining the Storegga Slide. Mar Pet Geol 22:11–19. doi:10.1016/j.marpetgeo.2004.12.003

    Article  Google Scholar 

  • Bugge T, Befring S, Belderson RH, Eidvin T, Jansen E, Kenyon NH, Holtedahl H, Sejrup HP (1987) A giant three-stage submarine slide off Norway. Geo-Mar Lett 7:191–198. doi:10.1007/BF02242771

    Article  Google Scholar 

  • Canals M, Lastras G, Urgeles R, Casamor JL, Mienert J, Cattaneo A, De Batist M, Haflidason H, Imbo Y, Laberg JS, Locat J, Long D, Longva O, Masson DG, Sultan N, Trincardi F, Bryn P (2004) Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: case studies from the COSTA project. Mar Geol 213:9–72. doi:10.1016/j.margeo.2004.10.001

    Article  Google Scholar 

  • Chabert A, Minshull TA, Westbrook GK, Berndt C, Thatcher KE, Sarkar S (2011) Characterization of a stratigraphically constrained gas hydrate system along the western continental margin of Svalbard from ocean bottom seismometer data. J Geophys Res 116:1–16. doi:10.1029/2011JB008211

    Google Scholar 

  • Cherkis NZ, Max MD, Vogt PR, Crane K, Midthassel A, Sundvor E (1999) Large-scale mass wasting on the north Spitsbergen continental margin, Arctic Ocean. Geo-Mar Lett 19:131–142. doi:10.1007/s003670050100

    Article  Google Scholar 

  • Ehlers B-M, Jokat W (2009) Subsidence and crustal roughness of ultra-slow spreading ridges in the northern North Atlantic and the Arctic Ocean. Geophys J Int 177:451–462. doi:10.1111/j.1365-246X.2009.04078.x

    Article  Google Scholar 

  • Eiken O, Hinz K (1993) Contourites in the Fram Strait. Sediment Geol 82:15–32. doi:10.1016/0037-0738(93)90110-Q

    Article  Google Scholar 

  • Elverhøi A, Andersen E, Dokken T, Hebbeln D, Spielhagen RF, Svendsen J-I, Sørflaten M, Rørnes A, Hald M, Forsberg CF (1995) The growth and decay of the late Weichselian Ice Sheet in Western Svalbard and adjacent areas based on provenance studies of marine sediments. Quat Res 44:303–316

    Article  Google Scholar 

  • Elverhøi A, De Blasio F, Butt F, Issler D, Harbitz C, Engvik L, Solheim A, Marr J (2002) Submarine mass-wasting on glacially-influenced continental slopes: processes and dynamics. In: Dowdeswell JA, O’Cofaigh C (eds) Glacier-influenced sediment. High-latitude continental margins. Geol Soc Lond Spec Publ 203:73–78

  • Evans D, Harrison Z, Shannon PM, Laberg JS, Nielsen T, Ayers S, Holmes R, Hoult RJ, Lindberg B, Haflidason H, Long D, Kuijpers A, Andersen ES, Bryn P (2005) Palaeoslides and other mass failures of Pliocene to Pleistocene age along the Atlantic continental margin of NW Europe. Mar Pet Geol 22:1131–1148. doi:10.1016/j.marpetgeo.2005.01.010

    Article  Google Scholar 

  • Fonseca L, Calder B (2005) Geocoder: an efficient backscatter map constructor. In: Proc US Hydro 2005 Conf, San Diego, CA, pp 1–9

  • Fonseca L, Mayer L (2007) Remote estimation of surficial seafloor properties through the application of Angular Range Analysis to multibeam sonar data. Mar Geophys Res 28:119–126. doi:10.1007/s11001-007-9019-4

    Article  Google Scholar 

  • Fournier M, Petit C, Chamot-Rooke N, Fabbri O, Huchon P, Maillot B, Lepvrier C (2008) Do ridge-ridge-fault triple junctions exist on Earth? Evidence from the Aden-Owen-Carlsberg junction in the NW Indian Ocean. Basin Res 20:575–590. doi:10.1111/j.1365-2117.2008.00356.x

    Article  Google Scholar 

  • Geissler WH, Jokat W, Brekke H (2011) The Yermak Plateau in the Arctic Ocean in the light of reflection seismic data—implication for its tectonic and sedimentary evolution. Geophys J Int 1334–1362. doi:10.1111/j.1365-246X.2011.05197.x

  • Harbitz CB, Løvholt F, Pedersen G, Masson DG (2006) Mechanisms of tsunami generation by submarine landslides: a short review. Norw J Geol 86:255–264

    Google Scholar 

  • Hebbeln D (2000) Flux of ice-rafted detritus from sea ice in the Fram Strait. Deep Sea Res II Top Stud Oceanogr 47:1773–1790. doi:10.1016/S0967-0645(00)00006-0

    Article  Google Scholar 

  • Hebbeln D, Berner H (1993) Surface sediment distribution in the Fram Strait. Deep Sea Res I Oceanogr Res Pap 40:1731–1745. doi:10.1016/0967-0637(93)90029-3

    Article  Google Scholar 

  • Hogan KA, Dowdeswell JA, Mienert J (2013) New insights into slide processes and seafloor geology revealed by side-scan imagery of the massive Hinlopen Slide, Arctic Ocean margin. Geo-Mar Lett 33:325–343. doi:10.1007/s00367-013-0330-6

    Article  Google Scholar 

  • Howe JA, Shimmield TM, Harland R (2008) Late Quaternary contourites and glaciomarine sedimentation in the Fram Strait. Sedimentology 55:179–200. doi:10.1111/j.1365-3091.2007.00897.x

    Google Scholar 

  • Hustoft S, Bünz S, Mienert J, Chand S (2009) Gas hydrate reservoir and active methane-venting province in sediments on <20 Ma young oceanic crust in the Fram Strait, offshore NW-Svalbard. Earth Planet Sci Lett 284:12–24. doi:10.1016/j.epsl.2009.03.038

    Article  Google Scholar 

  • Jackson DR, Briggs KB (1992) High-frequency bottom backscattering: roughness versus sediment volume scattering. J Acoust Soc Am 92:962–977

    Article  Google Scholar 

  • Jakobsson M, Backman J, Rudels B, Nycander J, Frank M, Mayer L, Jokat W, Sangiorgi F, O’Regan M, Brinkhuis H, King J, Moran K (2007) The early Miocene onset of a ventilated circulation regime in the Arctic Ocean. Nature 447:986–990. doi:10.1038/nature05924

    Article  Google Scholar 

  • Jakobsson M, Mayer L, Coakley B, Dowdeswell JA, Forbes S, Fridman B, Hodnesdal H, Noormets R, Pedersen R, Rebesco M, Schenke HW, Zarayskaya Y, Accettella D, Armstrong A, Anderson RM, Bienhoff P, Camerlenghi A, Church I, Edwards M, Gardner JV, Hall JK, Hell B, Hestvik O, Kristoffersen Y, Marcussen C, Mohammad R, Mosher D, Nghiem SV, Pedrosa MT, Travaglini PG, Weatherall P (2012) The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0. Geophys Res Lett 39:1–6. doi:10.1029/2012GL052219

    Article  Google Scholar 

  • Jakobsson M, Andreassen K, Bjarnadóttir LR, Dove D, Dowdeswell JA, England JH, Funder S, Hogan KA, Ingólfsson Ó, Jennings AE, Krog-Larsen N, Kirchner N, Landvik JY, Mayer L, Mikkelsen N, Möller P, Niessen F, Nilsson J, O’Regan M, Polyak L, Petersen NN, Stein R (2013) Arctic Ocean glacial history. Quat Sci Rev (in press). doi:10.1016/j.quascirev.2013.07.033

  • Jessen SP, Rasmussen TL, Nielsen T, Solheim A (2010) A new Late Weichselian and Holocene marine chronology for the western Svalbard slope 30,000–0 cal years BP. Quat Sci Rev 29:1301–1312. doi:10.1016/j.quascirev.2010.02.020

    Article  Google Scholar 

  • Kenyon NH (1987) Mass-wasting features on the continental slope of Northwest Europe. Mar Geol 74:57–77. doi:10.1016/0025-3227(87)90005-3

    Article  Google Scholar 

  • Klenke M, Schenke HW (2002) A new bathymetric model for the central Fram Strait. Mar Geophys Res 23:367–378. doi:10.1023/A:1025764206736

    Article  Google Scholar 

  • Klenke M, Schenke HW (2006) Digital terrain model (DTM) of the central Fram Strait. doi:10.1594/PANGAEA.526589

  • Laberg JS, Vorren TO (2000) The Trænadjupet Slide, offshore Norway - morphology, evacuation and triggering mechanisms. Mar Geol 171:95–114

    Article  Google Scholar 

  • Laberg JS, Vorren TO, Dowdeswell JA, Kenyon NH, Taylor J (2000) The Andøya Slide and the Andøya Canyon, north-eastern Norwegian–Greenland Sea. Mar Geol 162:259–275. doi:10.1016/S0025-3227(99)00087-0

    Article  Google Scholar 

  • Laberg JS, Kawamura K, Amundsen H, Baeten N, Forwick M, Rydningen TA, Vorren TO (2014) A submarine landslide complex affecting the Jan Mayen Ridge, Norwegian–Greenland Sea: slide-scar morphology and processes of sediment evacuation. Geo-Mar Lett 34:51–58. doi:10.1007/s00367-013-0345-z

    Article  Google Scholar 

  • Läderach T, Schlindwein V, Schenke H-W, Jokat W (2011) Seismicity and active tectonic processes in the ultra-slow spreading Lena Trough, Arctic Ocean. Geophys J Int 1354–1370. doi:10.1111/j.1365-246X.2010.04926.x

  • Langehaug HR, Falck E (2012) Changes in the properties and distribution of the intermediate and deep waters in the Fram Strait. Prog Oceanogr 96:57–76. doi:10.1016/j.pocean.2011.10.002

    Article  Google Scholar 

  • Lindberg B, Laberg JS, Vorren TO (2004) The Nyk Slide—morphology, progression, and age of a partly buried submarine slide offshore northern Norway. Mar Geol 213:277–289. doi:10.1016/j.margeo.2004.10.010

    Article  Google Scholar 

  • McAdoo BG, Watts P (2004) Tsunami hazard from submarine landslides on the Oregon continental slope. Mar Geol 203:235–245. doi:10.1016/S0025-3227(03)00307-4

    Article  Google Scholar 

  • Micallef A (2011) Marine geomorphology: geomorphological mapping and the study of submarine landslides. In: Smith MJ, Paron P, Griffiths JS (eds) Geomorphological mapping: methods and applications. Developments in earth surface processes, vol. 15. Elsevier, Amsterdam, pp 377–395

    Chapter  Google Scholar 

  • Micallef A, Mountjoy JJ (2011) A topographic signature of a hydrodynamic origin for submarine gullies. Geology 39:115–118. doi:10.1130/G31475.1

    Article  Google Scholar 

  • Mosher DC, Shimeld J, Hutchinson D, Lebedeva-Ivanova N, Chapman CB (2012) Submarine landslides in Arctic sedimentation: Canada Basin. In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine mass movements and their consequences. Springer, Dordrecht, pp 147–157

    Chapter  Google Scholar 

  • Rudels B, Schauer U, Björk G, Korhonen M, Pisarev S, Rabe B, Wisotzki A (2013) Observations of water masses and circulation with focus on the Eurasian Basin of the Arctic Ocean from the 1990s to the late 2000s. Ocean Sci 9:147–169. doi:10.5194/os-9-147-2013

    Article  Google Scholar 

  • Sultan N, Cochonat P, Foucher J-P, Mienert J (2004) Effect of gas hydrates melting on seafloor slope instability. Mar Geol 213:379–401. doi:10.1016/j.margeo.2004.10.015

    Article  Google Scholar 

  • Sundvor E, Eldholm O (1979) The western and northern margin off Svalbard. Tectonophysics 59:239–250. doi:10.1016/0040-1951(79)90048-9

    Article  Google Scholar 

  • Thiede J, Pfirman SL, Schenke HWH-W, Reil W, Prakla-Seismos WR (1990) Bathymetry of Molloy Deep: Fram Strait between Svalbard and Greenland. Mar Geophys Res 12:197–214

    Article  Google Scholar 

  • Vanneste M, Guidard S, Mienert J (2005) Bottom-simulating reflections and geothermal gradients across the western Svalbard margin. Terra Nova 17:510–516. doi:10.1111/j.1365-3121.2005.00643.x

    Article  Google Scholar 

  • Vanneste M, Mienert J, Bünz S, Bunz S (2006) The Hinlopen Slide: a giant, submarine slope failure on the northern Svalbard margin, Arctic Ocean. Earth Planet Sci Lett 245:373–388. doi:10.1016/j.epsl.2006.02.045

    Article  Google Scholar 

  • Vevik K (2011) A gas-hydrate related BSR on the W-Svalbard margin: distribution, geological control and formation mechanisms. MSc thesis, University of Tromsø, Tromsø

  • Vogt PR, Crane K, Sundvor E, Max MD, Pfirman SL (1994) Methane-generated (?) pockmarks on young, thickly sedimented oceanic crust in the Arctic: Vestnessa ridge, Fram Strait. Geology 22:255–258. doi:10.1130/0091-7613(1994)022<0255

    Article  Google Scholar 

  • Westbrook GK, Thatcher KE, Rohling EJ, Piotrowski AM, Pälike H, Osborne AH, Nisbet EG, Minshull TA, Lanoisellé M, James RH, Hühnerbach V, Green D, Fisher RE, Crocker AJ, Chabert A, Bolton C, Beszczynska-Möller A, Berndt C, Aquilina A (2009) Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophys Res Lett 36:1–5. doi:10.1029/2009GL039191

    Article  Google Scholar 

  • Williams KL, Jackson DR, Thorsos EI, Briggs KB (2002) Acoustic backscattering experiments in a well characterized sand sediment: data/model comparisons using sediment fluid and Biot models. IEEE J Ocean Eng 27:376–387. doi:10.1109/JOE.2002.1040925

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Knut and Alice Wallenberg Foundation, Swedish Research Council (VR) and the Swedish Maritime Administration for financing the multibeam installation on the icebreaker Oden. We also thank the captain and crew of Oden for helping with the data collection. The main author would like to acknowledge the support of the Bert Bolin Centre for Climate Research in his dissertation. Finally, we thank Kelly Hogan and an anonymous reviewer for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Freire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freire, F., Gyllencreutz, R., Jafri, R.U. et al. Acoustic evidence of a submarine slide in the deepest part of the Arctic, the Molloy Hole. Geo-Mar Lett 34, 315–325 (2014). https://doi.org/10.1007/s00367-014-0371-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-014-0371-5

Keywords

Navigation