Skip to main content

Advertisement

Log in

Sidescan backscatter variations of cold seeps on the Hikurangi Margin (New Zealand): indications for different stages in seep development

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Cold seeps on the Hikurangi Margin off New Zealand exhibit various seabed morphologies producing different intensity patterns in sidescan backscatter images. Acoustic backscatter characteristics of 25 investigated seep sites fall into four distinct types characterised by variations in backscatter intensity, distribution and inferred structural heights. The types reflect different carbonate morphologies including up to 20-m-high structures (type 1), low-relief crusts (type 2), scattered blocks (type 3) and carbonate-free sites (type 4). Each seep corresponds to a single type; intermediates were not observed. This correlates well with published data on seep fauna at each site, with the four types representing three different faunal habitats of successive stages of seep development. Backscatter signatures in sidescan sonar images of cold seeps may therefore serve as a convenient proxy for variations in faunal habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aharon P (1994) Geology and biology of modern and ancient submarine hydrocarbon seeps and vents: an introduction. Geo-Mar Lett 14:69–73. doi:10.1007/BF01203716

    Article  Google Scholar 

  • Aharon P, Schwarcz HP, Roberts HH (1997) Radiometric dating of submarine hydrocarbon seeps in the Gulf of Mexico. Geol Soc Am Bull 109:568–579. doi:10.1130/0016-7606(1997)109<0568:rdoshs>2.3.co;2

    Article  Google Scholar 

  • Augustin JM, Suave R, Lurton X, Voisset M, Dugelay S, Satra C (1996) Contribution of the multibeam acoustic imagery to the exploration of the sea-bottom. Mar Geophys Res 18:459–486. doi:10.1007/BF00286090

    Article  Google Scholar 

  • Baco AR, Rowden AA, Levin LA, Smith CR, Bowden DA (2010) Initial characterization of cold seep faunal communities on the New Zealand Hikurangi margin. Mar Geol 272:251–259. doi:10.1016/j.margeo.2009.06.015

    Article  Google Scholar 

  • Barnes PM, Mercier de Lépinay B (1997) Rates and mechanics of rapid frontal accretion along the very obliquely convergent southern Hikurangi margin, New Zealand. J Geophys Res 102:24,931–24,952. doi:10.1029/97JB01384

    Article  Google Scholar 

  • Barnes PM, Mercier de Lépinay B, Collot J-Y, Delteil J, Audru J-C (1998) Strain partitioning in the transition area between oblique subduction and continental collision, Hikurangi margin, New Zealand. Tectonics 17:534–557. doi:10.1029/98TC00974

    Article  Google Scholar 

  • Barnes PM, Lamarche G, Bialas J, Henrys S, Pecher I, Netzeband GL, Greinert J, Mountjoy JJ, Pedley K, Crutchley G (2010) Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand. Mar Geol 272:26–48. doi:10.1016/j.margeo.2009.03.012

    Article  Google Scholar 

  • Barrows TT, Juggins S, De Deckker P, Calvo E, Pelejero C (2007) Long-term sea surface temperature and climate change in the Australian-New Zealand region. Paleoceanography 22, PA2215. doi:10.1029/2006PA001328

    Article  Google Scholar 

  • Barry JP, Gary Greene H, Orange DL, Baxter CH, Robison BH, Kochevar RE, Nybakken JW, Reed DL, McHugh CM (1996) Biologic and geologic characteristics of cold seeps in Monterey Bay, California. Deep Sea Res I Ocean Res Pap 43:1739–1762. doi:10.1016/s0967-0637(96)00075-1

    Article  Google Scholar 

  • Bayon G, Henderson GM, Bohn M (2009) U-Th stratigraphy of a cold seep carbonate crust. Chem Geol 260:47–56. doi:10.1016/j.chemgeo.2008.11.020

    Article  Google Scholar 

  • Bialas J (ed) (2011) FS SONNE Fahrtbericht / Cruise Report SO-214 NEMESYS. IFM-GEOMAR, Leibniz-Institut für Meereswissenschaften, Kiel, Germany

  • Bialas J, Greinert J, Linke P, Pfannkuche O (eds) (2007) FS Sonne Fahrtbericht / Cruise Report SO 191 New Vents. IFM-GEOMAR, Leibniz-Institut für Meereswissenschaften, Kiel, Germany

  • Biastoch A, Treude T, Rüpke LH, Riebesell U, Roth C, Burwicz EB, Park W, Latif M, Böning CW, Madec G, Wallmann K (2011) Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification. Geophys Res Lett 38, L08602. doi:10.1029/2011GL047222

    Google Scholar 

  • Blondel P (2009) The handbook of sidescan sonar. Springer, Berlin

    Book  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jörgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626. doi:10.1038/35036572

    Article  Google Scholar 

  • Bowden DA, Rowden AA, Thurber AR, Baco AR, Levin LA, Smith CR (2013) Cold seep epifaunal communities on the Hikurangi Margin, New Zealand: composition, succession, and vulnerability to human activities. PLoS ONE 8:e76869. doi:10.1371/journal.pone.0076869

    Article  Google Scholar 

  • Brown KM, Tryon MD, DeShon HR, Dorman LM, Schwartz SY (2005) Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone. Earth Planet Sci Lett 238:189–203. doi:10.1016/j.epsl.2005.06.055

    Article  Google Scholar 

  • Buerk D, Klaucke I, Sahling H, Weinrebe W (2010) Morpho-acoustic variability of cold seeps on the continental slope offshore Nicaragua: result of fluid flow interaction with sedimentary processes. Mar Geol 275:53–65. doi:10.1016/j.margeo.2010.04.007

    Article  Google Scholar 

  • Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Glob Biogeochem Cycles 2:299–327

    Article  Google Scholar 

  • Collot J-Y, Delteil J, Lewis KB, Davy B, Lamarche G, Audru J-C, Barnes P, Chanier F, Chaumillon E, Lallemand S, Mercier de Lépinay B, Orpin A, Pelletier B, Sosson M, Toussaint B, Uruski C (1996) From oblique subduction to intra-continental transpression: structures of the southern Kermadec-Hikurangi Margin from multibeam bathymetry, side-scan sonar and seismic reflection. Mar Geophys Res 18:357–381. doi:10.1007/BF00286085

    Article  Google Scholar 

  • Crutchley GJ, Pecher IA, Gorman AR, Henrys SA, Greinert J (2010a) Seismic imaging of gas conduits beneath seafloor seep sites in a shallow marine gas hydrate province, Hikurangi Margin, New Zealand. Mar Geol 272:114–126. doi:10.1016/j.margeo.2009.03.007

    Article  Google Scholar 

  • Crutchley GJ, Geiger S, Pecher IA, Gorman AR, Zhu H, Henrys SA (2010b) The potential influence of shallow gas and gas hydrates on sea floor erosion of Rock Garden, an uplifted ridge offshore of New Zealand. Geo-Mar Lett 30:283–303. doi:10.1007/s00367-010-0186-y

    Article  Google Scholar 

  • Díaz-del-Río V, Somoza L, Martínez-Frias J, Mata MP, Delgado A, Hernandez-Molina FJ, Lunar R, Martín-Rubí JA, Maestro A, Fernández-Puga MC, León R, Llave E, Medialdea T, Vázquez JT (2003) Vast fields of hydrocarbon-derived carbonate chimneys related to the accretionary wedge/olistostrome of the Gulf of Cádiz. Mar Geol 195:177–200. doi:10.1016/s0025-3227(02)00687-4

    Article  Google Scholar 

  • Dupré S, Woodside J, Klaucke I, Mascle J, Foucher J-P (2010) Widespread active seepage activity on the Nile Deep Sea Fan (offshore Egypt) revealed by high-definition geophysical imagery. Mar Geol 275:1–19. doi:10.1016/j.margeo.2010.04.003

    Article  Google Scholar 

  • Faure K, Greinert J, Schneider von Deimling J, McGinnis DF, Kipfer R, Linke P (2010) Methane seepage along the Hikurangi Margin of New Zealand: geochemical and physical data from the water column, sea surface and atmosphere. Mar Geol 272:170–188. doi:10.1016/j.margeo.2010.01.001

    Article  Google Scholar 

  • Ferré B, Mienert J, Feseker T (2012) Ocean temperature variability for the past 60 years on the Norwegian-Svalbard margin influences gas hydrate stability on human time scales. J Geophys Res 117, C10017. doi:10.1029/2012JC008300

    Article  Google Scholar 

  • Gay A, Lopez M, Ondreas H, Charlou JL, Sermondadaz G, Cochonat P (2006) Seafloor facies related to upward methane flux within a Giant Pockmark of the Lower Congo Basin. Mar Geol 226:81–95. doi:10.1016/j.margeo.2005.09.011

    Article  Google Scholar 

  • Greinert J, Lewis KB, Bialas J, Pecher IA, Rowden A, Bowden DA, De Batist M, Linke P (2010a) Methane seepage along the Hikurangi Margin, New Zealand: overview of studies in 2006 and 2007 and new evidence from visual, bathymetric and hydroacoustic investigations. Mar Geol 272:6–25. doi:10.1016/j.margeo.2010.01.017

    Article  Google Scholar 

  • Greinert J, Bialas J, Lewis K, Suess E (2010b) Methane seeps at the Hikurangi Margin, New Zealand. Mar Geol 272:1–3. doi:10.1016/j.margeo.2010.02.018

    Article  Google Scholar 

  • Holland CW, Weber TC, Etiope G (2006) Acoustic scattering from mud volcanoes and carbonate mounds. J Acoust Soc Am 120:3553–3565

    Article  Google Scholar 

  • Hovland M (2002) On the self-sealing nature of marine seeps. Cont Shelf Res 22:2387–2394. doi:10.1016/s0278-4343(02)00063-8

    Article  Google Scholar 

  • Johnson HP, Helferty M (1990) The geological interpretation of side-scan sonar. Rev Geophys 28:357–380. doi:10.1029/RG028i004p00357

    Article  Google Scholar 

  • Johnson JE, Goldfinger C, Suess E (2003) Geophysical constraints on the surface distribution of authigenic carbonates across the Hydrate Ridge region, Cascadia margin. Mar Geol 202:79–120. doi:10.1016/S0025-3227(03)00268-8

    Article  Google Scholar 

  • Jones AT, Greinert J, Bowden DA, Klaucke I, Petersen CJ, Netzeband GL, Weinrebe W (2010) Acoustic and visual characterisation of methane-rich seabed seeps at Omakere Ridge on the Hikurangi Margin, New Zealand. Mar Geol 272:154–169. doi:10.1016/j.margeo.2009.03.008

    Article  Google Scholar 

  • Judd AG (2003) The global importance and context of methane escape from the seabed. Geo-Mar Lett 23:147–154. doi:10.1007/s00367-003-0136-z

    Article  Google Scholar 

  • Judd A, Hovland M (2007) Seabed fluid flow: The impact on geology, biology and the marine environment. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Judd AG, Hovland M, Dimitrov LI, García GS, Jukes V (2002) The geological methane budget at continental margins and its influence on climate change. Geofluids 2:109–126. doi:10.1046/j.1468-8123.2002.00027.x

    Article  Google Scholar 

  • Jung W-Y, Vogt PR (2004) Effects of bottom water warming and sea level rise on Holocene hydrate dissociation and mass wasting along the Norwegian-Barents Continental Margin. J Geophys Res 109, B06104. doi:10.1029/2003JB002738

    Google Scholar 

  • Karaca D, Hensen C, Wallmann K (2010) Controls on authigenic carbonate precipitation at cold seeps along the convergent margin off Costa Rica. Geochem Geophys Geosyst 11, Q08S27. doi:10.1029/2010GC003062

    Article  Google Scholar 

  • Kiel S (2009) Global hydrocarbon seep-carbonate precipitation correlates with deep-water temperatures and eustatic sea-level fluctuations since the Late Jurassic. Terra Nova 21:279–284. doi:10.1111/j.1365-3121.2009.00882.x

    Article  Google Scholar 

  • Klaucke I, Sahling H, Weinrebe W, Blinova V, Bürk D, Lursmanashvili N, Bohrmann G (2006) Acoustic investigation of cold seeps offshore Georgia, eastern Black Sea. Mar Geol 231:51–67. doi:10.1016/j.margeo.2006.05.011

    Article  Google Scholar 

  • Klaucke I, Masson DG, Petersen CJ, Weinrebe W, Ranero CR (2008) Multifrequency geoacoustic imaging of fluid escape structures offshore Costa Rica: implications for the quantification of seep processes. Geochem Geophys Geosyst 9, Q04010. doi:10.1029/2007GC001708

    Article  Google Scholar 

  • Klaucke I, Weinrebe W, Petersen CJ, Bowden D (2010) Temporal variability of gas seeps offshore New Zealand: Multi-frequency geoacoustic imaging of the Wairarapa area, Hikurangi margin. Mar Geol 272:49–58. doi:10.1016/j.margeo.2009.02.009

    Article  Google Scholar 

  • Klaucke I, Weinrebe W, Linke P, Klaeschen D, Bialas J (2012) Sidescan sonar imagery of widespread fossil and active cold seeps along the central Chilean continental margin. Geo-Mar Lett 32:489–499. doi:10.1007/s00367-012-0283-1

    Article  Google Scholar 

  • Krabbenhoeft A, Netzeband GL, Bialas J, Papenberg C (2010) Episodic methane concentrations at seep sites on the upper slope Opouawe Bank, southern Hikurangi Margin, New Zealand. Mar Geol 272:71–78. doi:10.1016/j.margeo.2009.08.001

    Article  Google Scholar 

  • Krabbenhoeft A, Bialas J, Klaucke I, Crutchley G, Papenberg C, Netzeband GL (2013) Patterns of subsurface fluid-flow at cold seeps: the Hikurangi Margin, offshore New Zealand. Mar Petrol Geol 39:59–73. doi:10.1016/j.marpetgeo.2012.09.008

    Article  Google Scholar 

  • Kutterolf S, Liebetrau V, Moerz T, Freundt A, Hammerich T, Garbe-Schönberg D (2008) Lifetime and cyclicity of fluid venting at forearc mound structures determined by tephrostratigraphy and radiometric dating of authigenic carbonates. Geology 36:707–710. doi:10.1130/G24806A.1

    Article  Google Scholar 

  • Law CS, Nodder SD, Mountjoy JJ, Marriner A, Orpin A, Pilditch CA, Franz P, Thompson K (2010) Geological, hydrodynamic and biogeochemical variability of a New Zealand deep-water methane cold seep during an integrated three-year time-series study. Mar Geol 272:189–208. doi:10.1016/j.margeo.2009.06.018

    Article  Google Scholar 

  • Le Bas TP, Mason DC, Millard NC (1995) TOBI image processing-the state of the art. IEEE J Ocean Eng 20:85–93. doi:10.1109/48.380242

    Article  Google Scholar 

  • Leifer I, Boles JR, Luyendyk BP, Clark JF (2004) Transient discharges from marine hydrocarbon seeps: spatial and temporal variability. Environ Geol 46:1038–1052. doi:10.1007/s00254-004-1091-3

    Article  Google Scholar 

  • Lewis KB, Marshall BA (1996) Seep faunas and other indicators of methane–rich dewatering on New Zealand convergent margins. New Zeal J Geol Geophys 39:181–200. doi:10.1080/00288306.1996.9514704

    Article  Google Scholar 

  • Lewis KB, Collot J-Y, Lallemand SE (1998) The dammed Hikurangi Trough: a channel-fed trench blocked by subducting seamounts and their wake avalanches (New Zealand–France GeodyNZ Project). Basin Res 10:441–468. doi:10.1046/j.1365-2117.1998.00080.x

    Article  Google Scholar 

  • Liebetrau V, Eisenhauer A, Linke P (2010) Cold seep carbonates and associated cold-water corals at the Hikurangi Margin, New Zealand: new insights into fluid pathways, growth structures and geochronology. Mar Geol 272:307–318. doi:10.1016/j.margeo.2010.01.003

    Article  Google Scholar 

  • Luff R, Wallmann K (2003) Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balances. Geochim Cosmochim Acta 67:3403–3421. doi:10.1016/s0016-7037(03)00127-3

    Article  Google Scholar 

  • Luff R, Wallmann K, Aloisi G (2004) Numerical modeling of carbonate crust formation at cold vent sites: significance for fluid and methane budgets and chemosynthetic biological communities. Earth Planet Sci Lett 221:337–353. doi:10.1016/s0012-821x(04)00107-4

    Article  Google Scholar 

  • MacDonald KC, Becker K, Spiess FN, Ballard RD (1980) Hydrothermal heat flux of the “Black Smoker” vents on the East Pacific Rise. Earth Planet Sci Lett 48:1–7

    Article  Google Scholar 

  • Mau S, Rehder G, Arroyo IG, Gossler J, Suess E (2007) Indications of a link between seismotectonics and CH4 release from seeps off Costa Rica. Geochem Geophys Geosyst 8, Q04003. doi:10.1029/2006GC001326

    Article  Google Scholar 

  • Mazzini A, Ivanov MK, Nermoen A, Bahr A, Bohrmann G, Svensen H, Planke S (2008) Complex plumbing systems in the near subsurface: geometries of authigenic carbonates from Dolgovskoy Mound (Black Sea) constrained by analogue experiments. Mar Petrol Geol 25:457–472. doi:10.1016/j.marpetgeo.2007.10.002

    Article  Google Scholar 

  • McGinnis DF, Greinert J, Artemov Y, Beaubien SE, Wüest A (2006) Fate of rising methane bubbles in stratified waters: how much methane reaches the atmosphere? J Geophys Res 111, C09007. doi:10.1029/2005JC003183

    Google Scholar 

  • Mienert J, Vanneste M, Haflidason H, Bünz S (2010) Norwegian margin outer shelf cracking: a consequence of climate-induced gas hydrate dissociation? Int J Earth Sci 99:207–225. doi:10.1007/s00531-010-0536-z

    Article  Google Scholar 

  • Mitchell NC (1993) A model for attenuation of backscatter due to sediment accumulations and its application to determine sediment thicknesses with GLORIA sidescan sonar. J Geophys Res 98:22477–22493

    Article  Google Scholar 

  • Moore JC, Vrolijk P (1992) Fluids in accretionary prisms. Rev Geophys 30:113–135. doi:10.1029/92RG00201

    Article  Google Scholar 

  • Naudts L, Greinert J, Artemov Y, Beaubien SE, Borowski C, Batist MD (2008) Anomalous sea-floor backscatter patterns in methane venting areas, Dnepr paleo-delta, NW Black Sea. Mar Geol 251:253–267. doi:10.1016/j.margeo.2008.03.002

    Article  Google Scholar 

  • Netzeband GL, Krabbenhoeft A, Zillmer M, Petersen CJ, Papenberg C, Bialas J (2010) The structures beneath submarine methane seeps: seismic evidence from Opouawe Bank, Hikurangi Margin, New Zealand. Mar Geol 272:59–70. doi:10.1016/j.margeo.2009.07.005

    Article  Google Scholar 

  • Plaza-Faverola A, Bünz S, Mienert J (2011) Repeated fluid expulsion through sub-seabed chimneys offshore Norway in response to glacial cycles. Earth Planet Sci Lett 305:297–308. doi:10.1016/j.epsl.2011.03.001

    Article  Google Scholar 

  • Plaza-Faverola A, Pecher I, Crutchley G, Barnes PM, Bünz S, Golding T, Klaeschen D, Papenberg C, Bialas J (2013) Submarine gas seepage in a mixed contractional and shear deformation regime: cases from the Hikurangi oblique-subduction margin. Geochem Geophys Geosyst. doi:10.1002/2013GC005082

    Google Scholar 

  • Ritger S, Carson B, Suess E (1987) Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin. Geol Soc Am Bull 98:147–156. doi:10.1130/0016-7606(1987)98<147:macfbs>2.0.co;2

    Article  Google Scholar 

  • Sahling HR, Rickert D, Lee RW, Linke P, Suess E (2002) Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. Mar Ecol Prog Ser 231:121–138

    Article  Google Scholar 

  • Schmale O, Beaubien SE, Rehder G, Greinert J, Lombardi S (2010) Gas seepage in the Dnepr paleo-delta area (NW Black Sea) and its regional impact on the water column methane cycle. J Mar Syst 80:90–100. doi:10.1016/j.marsys.2009.10.003

    Article  Google Scholar 

  • Schwalenberg K, Haeckel M, Poort J, Jegen M (2010) Evaluation of gas hydrate deposits in an active seep area using marine controlled source electromagnetics: results from Opouawe Bank, Hikurangi Margin, New Zealand. Mar Geol 272:79–88. doi:10.1016/j.margeo.2009.07.006

    Article  Google Scholar 

  • Sibson RH (1994) Crustal stress, faulting and fluid flow. Geol Soc Spec Publ 78:69–84. doi:10.1144/gsl.sp.1994.078.01.07

    Article  Google Scholar 

  • Sommer S, Linke P, Pfannkuche O, Niemann H, Treude T (2010) Benthic respiration in a seep habitat dominated by dense beds of ampharetid polychaetes at the Hikurangi Margin (New Zealand). Mar Geol 272:223–232. doi:10.1016/j.margeo.2009.06.003

    Article  Google Scholar 

  • Spiess FN, MacDonald KC, Atwater T, Ballard R, Carranza A, Cordoba D, Cox C, Diaz Garcia VM, Francheteau J, Guerrero J, Hawkins J, Haymon R, Hessler R, Juteau T, Kastner M, Larson R, Luyendyk B, Macdougall JD, Miller S, Normark W, Orcutt J, Rangin C (1980) East Pacific Rise: hot springs and geophysical experiment. Science 207:1421–1433

    Article  Google Scholar 

  • Stakes DS, Orange D, Paduan JB, Salamy KA, Maher N (1999) Cold-seeps and authigenic carbonate formation in Monterey Bay, California. Mar Geol 159:93–109. doi:10.1016/s0025-3227(98)00200-x

    Article  Google Scholar 

  • Stockwell J (1997) Free software in education: a case study of CWP/SU: Seismic Unix. Lead Edge 16:1045–1050. doi:10.1190/1.1437723

    Article  Google Scholar 

  • Teichert BMA, Eisenhauer A, Bohrmann G, Haase-Schramm A, Bock B, Linke P (2003) U/Th systematics and ages of authigenic carbonates from Hydrate Ridge, Cascadia Margin: recorders of fluid flow variations. Geochim Cosmochim Acta 67:3845–3857. doi:10.1016/s0016-7037(03)00128-5

    Article  Google Scholar 

  • Teichert BMA, Bohrmann G, Suess E (2005) Chemoherms on Hydrate Ridge—unique microbially-mediated carbonate build-ups growing into the water column. Palaeogeogr Palaeoclimatol Palaeoecol 227:67–85. doi:10.1016/j.palaeo.2005.04.029

    Article  Google Scholar 

  • Van Dover CL, Aharon P, Bernhard JM, Caylor E, Doerries M, Flickinger W, Gilhooly W, Goffredi SK, Knick KE, Macko SA, Rapoport S, Raulfs EC, Ruppel C, Salerno JL, Seitz RD, Sen Gupta BK, Shank T, Turnipseed M, Vrijenhoek R (2003) Blake Ridge methane seeps: characterization of a soft-sediment, chemosynthetically based ecosystem. Deep Sea Res I Oceanogr Res Pap 50:281–300. doi:10.1016/s0967-0637(02)00162-0

    Article  Google Scholar 

  • Wallace LM, Beavan J, McCaffrey R, Darby D (2004) Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. J Geophys Res 109, B12406. doi:10.1029/2004JB003241

    Article  Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans AGU 79:579. doi:10.1029/98eo00426

    Article  Google Scholar 

  • Westbrook GK, Thatcher KE, Rohling EJ, Piotrowski AM, Pälike H, Osborne AH, Nisbet EG, Minshull TA, Lanoisellé M, James RH, Hühnerbach V, Green D, Fisher RE, Crocker AJ, Chabert A, Bolton C, Beszczynska-Möller A, Berndt C, Aquilina A (2009) Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophys Res Lett 36, L15608. doi:10.1029/2009GL039191

    Google Scholar 

  • Wilken D, Feldens P, Wunderlich T, Heinrich C (2012) Application of 2D Fourier filtering for elimination of stripe noise in side-scan sonar mosaics. Geo-Mar Lett 32:337–347. doi:10.1007/s00367-012-0293-7

    Article  Google Scholar 

  • Wood R, Davy B (1994) The Hikurangi Plateau. Mar Geol 118:153–173. doi:10.1016/0025-3227(94)90118-x

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the captains, crews and scientific staff of RV SONNE cruises SO191 and SO214 for their excellent support. The cruises were financed by the German Ministry for Education and Research (BMBF) under grants no. 03G0191A and 03G0214. We thank Wilhelm Weinrebe for producing the bathymetry grids, and Volker Liebetrau for a stimulating discussion of carbonate precipitation. Avan N. Antia is acknowledged for helpful comments on an earlier version of this manuscript. Daniel Praeg and the editors are thanked for constructive reviews and comments that helped significantly to improve our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Dumke.

Additional information

Responsible editors: B.W. Flemming and M.T. Delafontaine

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumke, I., Klaucke, I., Berndt, C. et al. Sidescan backscatter variations of cold seeps on the Hikurangi Margin (New Zealand): indications for different stages in seep development. Geo-Mar Lett 34, 169–184 (2014). https://doi.org/10.1007/s00367-014-0361-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-014-0361-7

Keywords

Navigation