Skip to main content
Log in

On the displacement of marked pebbles on two coarse-clastic beaches during short fair-weather periods (Marina di Pisa and Portonovo, Italy)

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

The aim of the investigation was to define the mechanisms of sediment transport in the swash zone of microtidal coarse-clastic beaches in the very short term by evaluating the displacement rates of marked pebbles under low-energy wave conditions. Tests were performed at two sites (Marina di Pisa, Ligurian Sea, and Portonovo, central Adriatic Sea) to check the consistency of the data over a range of different grain sizes. Two recovery campaigns were carried out at both sites, one 6 h and the other 24 h after the injection. During the experiments wave action was at a minimum (wave heights never exceeded 0.3 m). The results show that 20% of pebbles ranging in diameter from 30–90 mm moved significantly (more than 0.5 m) already 6 h after the injection, with some tracers being lost (3%). After 24 h, 40% of the pebbles were significantly displaced and 10% were lost. The preferential downslope movement of tracers, which suggests that coarse sediment movement under low-energy conditions is mainly controlled by gravity processes enhanced by steep beachface slopes, represents the novelty of the results reported here. It would appear that swash processes on low-energy beaches cause a significant rate of pebble displacement through the destabilization induced by wave uprush and backwash. Despite the microtidal range, the position of the mean water level plays a major role in changing the beach level at which swash processes can actually trigger pebble movement. The results of this study show that considerable, and mostly seaward-directed, coarse sediment transport takes place even during short fair-weather periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allan JC, Hart R, Tranquilli JV (2006) The use of Passive Integrated Transponder (PIT) tags to trace cobble transport in a mixed sand-and-gravel beach on the high-energy Oregon coast, USA. Mar Geol 232(1/2):63–86. doi:10.1016/j.margeo.2006.07.005

    Article  Google Scholar 

  • Austin MJ, Masselink G, Russell PE, Turner IL, Blenkinsopp CE (2011) Alongshore fluid motions in the swash zone of a sandy and gravel beach. Coast Eng 58(8):690–705. doi:10.1016/j.coastaleng.2011.03.004

    Article  Google Scholar 

  • Battjes JA (1974) Surf similarity. In: Proc 14th Conf Coastal Engineering, ASCE, Copenhagen, pp 466–480. doi:10.9753/icce.v14

  • Bauer BO, Allen JR (1995) Beach steps: an evolutionary perspective. Mar Geol 123(3/4):143–166. doi:10.1016/0025-3227(95)00011-M

    Article  Google Scholar 

  • Benavente J, Gracia FJ, Anfuso G, Lopez-Aguayo F (2005) Temporal assessment of sediment transport from beach nourishments by using foraminifera as natural tracers. Coast Eng 52(3):205–219. doi:10.1016/j.coastaleng.2004.12.002

    Article  Google Scholar 

  • Benelli G, Pozzebon A, Raguseo G, Bertoni D, Sarti G (2009) An RFID based system for the underwater tracking of pebbles on artificial coarse beaches. In: Proc 3rd Int Conf Sensor Technologies and Applications, Athens, pp 294–299. doi:10.1109/SENSORCOMM.2009.52

  • Bertoni D, Sarti G (2011) On the profile evolution of three artificial pebble beaches at Marina di Pisa, Italy. Geomorphology 130(3/4):244–254. doi:10.1016/j.geomorph.2011.04.002

    Article  Google Scholar 

  • Bertoni D, Sarti G, Benelli G, Pozzebon A, Raguseo G (2010) Radio Frequency Identification (RFID) technology applied to the definition of underwater and subaerial coarse sediment movement. Sediment Geol 228(3/4):140–150. doi:10.1016/j.sedgeo.2010.04.007

    Article  Google Scholar 

  • Bertoni D, Sarti G, Benelli G, Pozzebon A, Raguseo G (2012a) Transport trajectories of “smart” pebbles on an artificial coarse-grained beach at Marina di Pisa (Italy): implications for beach morphodynamics. Mar Geol 291(294):227–235. doi:10.1016/j.margeo.2011.08.004

    Article  Google Scholar 

  • Bertoni D, Sarti G, Benelli G, Pozzebon A (2012b) In situ abrasion of marked pebbles on two coarse-clastic beaches (Marina di Pisa, Italy). Ital J Geosci 131(2):205–214. doi:10.3301/IJG.2012.04

    Google Scholar 

  • Bluck BJ (1967) Sedimentation of beach gravels: examples from south Wales. J Sediment Petrol 37:128–156. doi:10.1306/74D71672-2B21-11D7-8648000102C1865D

    Google Scholar 

  • Buscombe D, Masselink G (2006) Concepts in gravel beach dynamics. Earth-Sci Rev 79(1/2):33–52. doi:10.1016/j.earscirev.2006.06.003

    Article  Google Scholar 

  • Ciavola P (2004) Tracers. In: Schwartz M (ed) Encyclopedia of Coastal Sciences. Kluwer Academic Publishers, Dordrecht, pp 1253–1258

    Google Scholar 

  • Ciavola P, Taborda R, Ferreira O, Dias JMA (1997) Field measurements of longshore sand transport and control processes on a steep meso-tidal beach in Portugal. J Coast Res 13(4):1119–1129

    Google Scholar 

  • Ciavola P, Dias N, Ferreira O, Taborda R, Dias JMA (1998) Fluorescent sands for measurements of longshore transport rates: a case study from Praia de Faro in southern Portugal. Geo-Mar Lett 18(1):19–47. doi:10.1007/s003670050051

    Article  Google Scholar 

  • Cipriani LE, Ferri S, Iannotta P, Paolieri F, Pranzini E (2001) Morfologia e dinamica dei sedimenti del litorale della Toscana settentrionale. Studi Costieri 4:119–156

    Google Scholar 

  • Curoy J (2010) Morphological and longshore sediment transport processes on mixed beaches. PhD Thesis, University of Sussex

  • Curtiss GM, Osborne PD, Horner-Devine AR (2009) Seasonal patterns of coarse sediment transport on a mixed sand and gravel beach due to vessel wakes, wind waves, and tidal currents. Mar Geol 259(1/4):73–85. doi:10.1016/j.margeo.2008.12.009

    Article  Google Scholar 

  • Deguchi I, Ono M, Araki S, Sawaragi T (1998) Motions of pebbles on pebble beach. In: Proc 26th Int Conf Coastal Engineering, ASCE, Copenhagen, pp 2654–2667

  • Ellis JT, Cappietti L (2013) Storm-driven hydrodynamics and sedimentological impacts to an engineered coast. J Coast Res SI65:1461–1466. doi:10.2112/SI65-247.1

    Google Scholar 

  • Holman RA (1986) Extreme value statistics for wave run-up on a natural beach. Coast Eng 9(6):527–544. doi:10.1016/0378-3839(86)90002-5

    Article  Google Scholar 

  • Ibbeken H, Schleyer R (1991) Source and sediment. Springer, Berlin

    Book  Google Scholar 

  • Komar PD, Inman DL (1970) Longshore sand transport on beaches. J Geophys Res 75(30):5914–5927. doi:10.1029/JC075i030p05914

    Article  Google Scholar 

  • Mase H (1989) Random wave runup height on gentle slope. J Waterw Port Coast Ocean Eng 115(5):649–661. doi:10.1061/(ASCE)0733-950X(1989)115:5(649)

    Article  Google Scholar 

  • Mason T, Coates TT (2001) Sediment transport processes on mixed beaches: a review for shoreline management. J Coast Res 17(3):645–657

    Google Scholar 

  • Masselink G, Hughes MG (2003) Introduction to coastal processes & geomorphology. Arnold, London

    Google Scholar 

  • McCave IN (1978) Grain size trends and transport along beaches: example from eastern England. Mar Geol 28(1/2):M43–M51. doi:10.1016/0025-3227(78)90092-0

    Article  Google Scholar 

  • Miller IM, Warrick JA, Morgan C (2011) Observations of coarse sediment movements on the mixed beach of the Elwha Delta, Washington. Mar Geol 282(3/4):201–214. doi:10.1016/j.margeo.2011.02.012

    Article  Google Scholar 

  • National Institute of Health (2004) ImageJ software. http://rsbweb.nih.gov/ij. Accessed 20 July 2013

  • Packham JR, Randall RE, Barnes RSK, Neal A (eds) (2001) Ecology and geomorphology of coastal shingle. Westbury, Otley

    Google Scholar 

  • Poizot E, Anfuso G, Méar Y, Bellido C (2013) Confirmation of beach accretion by grain-size trend analysis: Camposoto beach, Cádiz, SW Spain. Geo-Mar Lett 33(4):263–272. doi:10.1007/s00367-013-0325-3

    Article  Google Scholar 

  • Regione Marche (2005) Studi, indagini, modelli matematici finalizzati alla redazione del piano di difesa della costa. Boll Ufficiale Regione Marche 21:4199–4675

    Google Scholar 

  • Saini S, Jackson NL, Nordstrom KF (2012) Characteristics of sediment in transport in the swash zone of a steep estuarine foreshore. Sedimentology 59(3):1001–1013. doi:10.1111/j.1365-3091.2011.01289.x

    Article  Google Scholar 

  • Salomons W, Mook WG (1987) Natural tracers for sediment transport studies. Cont Shelf Res 7(11/12):1333–1343. doi:10.1016/0278-4343(87)90037-9

    Article  Google Scholar 

  • Sancho-García A, Guillén J, Ojeda E (2013) Storm-induced readjustment of an embayed beach after modification by protection works. Geo-Mar Lett 33(2/3):159–172. doi:10.1007/s00367-012-0319-6

    Article  Google Scholar 

  • Sedrati M, Ciavola P, Reyns J, Armaroli C, Sipka V (2009) Morphodynamics of a microtidal protected beach during low wave-energy conditions. J Coast Res SI56:198–202

    Google Scholar 

  • Short AD (ed) (1999) Handbook of beach and shoreface morphodynamics. Wiley, Chichester

    Google Scholar 

  • Silva A, Taborda R, Rodrigues A, Duarte J, Cascalho J (2007) Longshore drift estimation using fluorescent tracers: new insights from an experiment at Comporta Beach, Portugal. Mar Geol 240(1/4):137–150. doi:10.1016/j.margeo.2007.02.009

    Article  Google Scholar 

  • Stockdon HF, Holman RA, Howd PA, Sallenger JAH (2006) Empirical parameterization of setup, swash, and runup. Coast Eng 53(7):573–588. doi:10.1016/j.coastaleng.2005.12.005

    Article  Google Scholar 

  • Van der Meer JW, Breteler MK (1990) Measurements and computation of wave induced velocities on a smooth slope. In: Proc 22nd Int Conf Coastal Engineering, ASCE, Delft, pp 191–204

  • Vousdoukas MI, Velegrakis AF, Dimou K, Zervakis V, Conley DC (2009) Wave run-up observations in microtidal, sediment-starved pocket beaches of the Eastern Mediterranean. J Mar Systems 78(supplement):S37–S47. doi:10.1016/j.jmarsys.2009.01.009

    Article  Google Scholar 

  • White TE (1998) Status of measurement techniques for coastal sediment transport. Coast Eng 35(1/2):17–45. doi:10.1016/S0378-3839(98)00033-7

    Article  Google Scholar 

  • Wright DL, Short AD, Green MO (1985) Short-term changes in the morphodynamic states of beaches and surf zones: an empirical predictive model. Mar Geol 62(3/4):339–364. doi:10.1016/0025-3227(85)90123-9

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Regione Marche – P.F. Difesa della Costa for their support during every step of the research. The fieldwork would have been far more tiring without many friends and colleagues who helped us during the recovery campaigns: in particular, we wish to thank Federico Bertocchini, Gino Brambilla, Dr. Mitchell Harley and Prof. Javier Benavente of the University of Cadiz. Wave data at Marina di Pisa were kindly provided by the Tuscany Hydrographic Office. We also gratefully acknowledge ISPRA for the offshore wave data at Ancona. This work was first reported at the October 2012 “Particles in Europe” Conference in Barcelona, Spain, the main organizer being Dr. Ole Mikkelsen of Sequoia Scientific, Inc., Bellevue, WA. Comments from two anonymous reviewers and the editors led to substantial improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duccio Bertoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertoni, D., Grottoli, E., Ciavola, P. et al. On the displacement of marked pebbles on two coarse-clastic beaches during short fair-weather periods (Marina di Pisa and Portonovo, Italy). Geo-Mar Lett 33, 463–476 (2013). https://doi.org/10.1007/s00367-013-0341-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-013-0341-3

Keywords

Navigation