Skip to main content

Advertisement

Log in

Can beach dune ridges of the Texas Gulf Coast preserve climate signals?

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

A study of the evolution of North Padre Island (southern Texas Gulf Coast) dunes was carried out using LIDAR topographic data, dune vibracores through the center of the dunes, and grab samples of shoreface sand at four locations along a cross-shore profile. Grain-size analyses of the vibracores show vertical variations in shoreface sand deposition over decimeter depth intervals. A dune ridge growth model is introduced that describes the dune vertical accretion rate as a function of island progradation and freshwater lens expansion. This model allows indirect dating of the dune core samples based on a known island progradation rate (1 m/year), and height and spacing of the dunes calculated from the topographic data. A sand provenance model is also proposed that links the sand deposition in the dunes with sand sourced from various depths along the shoreface profile, depending on storm activity. We present evidence linking the changes in storm-sand deposition in the dune cores with yearly climatic fluctuations in the Gulf of Mexico associated with landfalling tropical storm activity in the period from 1942–1965. This record of storm-induced sand variability is negatively correlated with El Niño-Southern Oscillation (Pacific) sea surface temperature variability, and positively correlated with North Atlantic decadal sea surface temperature variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aagaard T, Orford J, Murray AS (2007) Environmental controls on coastal dune formation; Skallingen Spit, Denmark. Geomorphology 83:29–47. doi:10.1016/j.geomorph.2006.06.007

    Article  Google Scholar 

  • Arens SM (1996) Rates of aeolian transport on a beach in a temperate humid climate. Geomorphology 17:3–18. doi:10.1016/0169-555X(95)00089-N

    Article  Google Scholar 

  • Arens SM, Wiersma J (1994) The Dutch foredunes: inventory and classification. J Coast Res 10:189–202

    Google Scholar 

  • Arens SM, Loffler MAM, Nuijen EM (2007) Evaluatie Dynamisch Kustbeheer Friese Waddeneilanden RAP2006.04. Commissioned by North-Netherland National Public Works. Bureau for Beach and Dune Research, Land Guide Office, Amsterdam

  • Bullard F (1942) Source of beach and river sands on the Gulf Coast of Texas. Geol Soc Am Bull 53:1021–1044

    Google Scholar 

  • Buynevich IV, FitzGerald DM, van Heteren S (2004) Sedimentary records of intense storms in Holocene barrier sequences, Maine, USA. Mar Geol 210:135–148. doi:10.1016/j.margeo.2004.05.007

    Article  Google Scholar 

  • Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080

    Article  Google Scholar 

  • Folk RL (1974) Petrology of sedimentary rocks. Hemphill, Austin

    Google Scholar 

  • Garrison JR Jr, Williams J, Potter Miller S, Weber ET II, McMechan G, Zeng X (2010) Ground-penetrating radar study of North Padre Island: implications for barrier island internal architecture, model for growth of progradational microtidal barrier islands, and Gulf of Mexico sea-level cyclicity. J Sediment Res 80:303–319. doi:10.2110/jsr.2010.034

    Google Scholar 

  • Goldenberg SB, Landsea CW, Mestas-Nuñez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293:474–479

    Article  Google Scholar 

  • Gray WM (1984) Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon Weather Rev 112:1649–1668

    Article  Google Scholar 

  • Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal MB, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103:18,567–18,589. doi:10.1029/97JC01736

  • Keim BD, Muller RA, Stone GW (2004) Spatial and temporal variability of coastal storms in the North Atlantic Basin. Mar Geol 210:7–15. doi:10.1016/j.margeo.2003.12.006

    Article  Google Scholar 

  • Landsea CW, Anderson C, Charles N, Clark G, Dunion J, Fernandez-Partagas J, Hungerford P, Neumann C, Zimmer M (2004) The Atlantic hurricane database re-analysis project: documentation for the 1851–1910 alterations and additions to the HURDAT database. In: Murnane RJ, Liu K-B (eds) Hurricanes and typhoons: past, present and future. Columbia University Press, New York, pp 177–221

    Google Scholar 

  • Lindhorst S, Betzler C, Hass HC (2008) The sedimentary architecture of a Holocene barrier spit (Sylt, German Bight): swash-bar accretion and storm erosion. Sediment Geol 206:1–16. doi:10.1016/j.sedgeo.2008.02.008

    Article  Google Scholar 

  • Mestas-Nuñez AM, Enfield DB (1999) Rotated global modes of non-ENSO sea surface temperature variability. J Climate 12:2734–2746

    Article  Google Scholar 

  • Molinari RL, Mestas-Nuñez AM (2003) North Atlantic decadal variability and the formation of tropical storms and hurricanes. Geophys Res Lett 30:1541. doi:10.1029/2002GL016462

    Article  Google Scholar 

  • Morton RA, Pieper MJ (1977) Shoreline changes on Mustang Island and North Padre Island (Aransas Pass to Yarborough Pass); an analysis of historical changes of the Texas Gulf shoreline. University of Texas at Austin, Bureau of Economic Geology, Geological Circular 77-1

  • Morton RA, Paine JG, Blum MD (2000) Responses of stable bay-margin and barrier-island systems to Holocene sea-level highstands, western Gulf of Mexico. J Sediment Res 70:478–490. doi:10.1306/2DC40921-0E47-11D7-8643000102C1865D

    Article  Google Scholar 

  • Nordstrom KF, Psuty N, Carter B (1990) Coastal dunes: form and process. Wiley, Chichester

    Google Scholar 

  • Otvos EG (2000) Beach ridges—definitions and significance. Geomorphology 32:83–108

    Article  Google Scholar 

  • Pepper DA, Stone GW (2004) Hydrodynamic and sedimentary responses to two contrasting winter storms on the inner shelf of the northern Gulf of Mexico. Mar Geol 210:43–62. doi:10.1016/j.margeo.2004.05.004

    Article  Google Scholar 

  • Poore RZ, DeLong KL, Richey JN, Quinn TM (2009) Evidence of multidecadal climate variability and the Atlantic Multidecadal Oscillation from a Gulf of Mexico sea-surface temperature-proxy record. Geo-Mar Lett 29:477–484. doi:10.1007/s00367-009-0154-6

    Article  Google Scholar 

  • Schwarzer K, Diesing M, Larson M, Niedermeyer R-O, Schumacher W, Furmanczyk K (2004) Coastline evolution at different time scales – examples from the Pomeranian Bight, southern Baltic Sea. Mar Geol 194:79–101. doi:10.1016/S0025-3227(02)00700-4

    Article  Google Scholar 

  • Shapiro LJ, Goldenberg SB (1998) Atlantic sea surface temperatures and tropical cyclone formation. J Climate 11:578–590

    Article  Google Scholar 

  • Skilbeck CG, Rolph TC, Hill N, Woods J, Wilkens RH (2005) Holocene millennial/centennial-scale multiproxy cyclicity in temperate eastern Australian estuary sediments. J Quat Sci 20:327–347. doi:10.1002/jqs.920

    Article  Google Scholar 

  • Stone GW, Orford JD (2004) Storms and their significance in coastal morpho-sedimentary dynamics. Mar Geol 210:1–5. doi:10.1016/j.margeo.2004.05.003

    Article  Google Scholar 

  • Stone GW, Liu B, Pepper DA, Wang P (2004) The importance of extratropical and tropical cyclones on the short-term evolution of barrier islands along the northern Gulf of Mexico, USA. Mar Geol 210:63–78. doi:10.1016/j.margeo.2004.05.021

    Article  Google Scholar 

  • Swift DJP, Niederoda AW, Vincent CE, Hopkins TS (1985) Barrier island evolution, middle Atlantic shelf, U.S.A. Part I: shoreface dynamics. Mar Geol 63:331–361. doi:10.1016/0025-3227(85)90089-1

    Article  Google Scholar 

  • Tanner WF (1991) The “Gulf of Mexico” Late Holocene sea level curve and river delta history. Gulf Coast Assoc Geol Soc Trans 41:583–589

    Google Scholar 

  • Tanner WF (1992) Late Holocene sea-level changes from grain-size data: evidence from the Gulf of Mexico. Holocene 2:249–254. doi:10.1306/A1ADDD3F-0DFE-11D7-8641000102C1865D

    Article  Google Scholar 

  • Tanner WF, Demirpolat S, Stapor FW, Alvarez L (1989) The “Gulf of Mexico” Late Holocene sea level curve. Gulf Coast Assoc Geol Soc Trans 39:553–562. doi:10.1306/A1ADDC78-0DFE-11D7-8641000102C1865D

    Google Scholar 

  • Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Müller SA, Prentice IC, Solomina O, Stocker TF, Tarasov P, Wagner M, Widmann M (2008) Mid- to Late Holocene climate change: an overview. Quat Sci Rev 27:1791–1828. doi:10.1016/j.quascirev.2008.06.013

    Article  Google Scholar 

  • Williams DD, Kraus NC, Kelly FJ, Smith AN, Anderson CM (2005) Baseline and construction monitoring of Packery Channel, Corpus Christi, Texas. In: Proc Florida Shore and Beach Preservation Association. http://www.fsbpa.com/05Proceedings/13-Deidre%20Williams.pdf (accessed 1 May 2009)

  • Wright LD (1995) Morphodynamics of inner continental shelves. CRC Press, Boca Raton

Download references

Acknowledgements

The beach shoreface data were provided by D. Williams from the Division of Nearshore Research of the Conrad Blucher Institute for Surveying and Science, the LIDAR data by J. Gibeaut of the Harte Research Institute, and the Wadden Sea island dune topographic data by B. Arens. Mustang Island State Park samples were collected with permission of Texas Parks and Wildlife. This study was conducted under Padre Island National Seashore research permits PAIS-2008-SCI-0002 and PAIS-2009-SCI-0001 to J. Garrison. K. Deppe, J. Hardell, and J. Polasek assisted with vibracore acquisition, K. Deppe and E. Weber with grain-size analyses, and R. Hay with LIDAR data analysis. L. Lumb was supported in part by NSF Undergraduate Mentoring in Environmental Biology grant #0602783, TAMUCC, and A. Mestas-Nuñez by NSF grant ATM-0631677. Two anonymous reviewers and the journal editors B.W. Flemming and M.T. Delafontaine provided valuable comments. This paper is Contribution No. 1222 from the Department of Geosciences at the University of Texas at Dallas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Garrison Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garrison, J.R., Mestas-Nuñez, A.M., Williams, J.R. et al. Can beach dune ridges of the Texas Gulf Coast preserve climate signals?. Geo-Mar Lett 32, 241–250 (2012). https://doi.org/10.1007/s00367-011-0263-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-011-0263-x

Keywords

Navigation