Skip to main content
Log in

Efficient and structure-preserving time-dependent auxiliary variable method for a conservative Allen–Cahn type surfactant system

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this study, we establish a phase-field two-phase surfactant system using two conservative Allen–Cahn type equations. Two nonlocal Lagrange multipliers are used to achieve the mass conservations. Comparing with the Cahn–Hilliard-type binary surfactant models which consist of two fourth-order nonlinear partial differential equations, the present model is easier because we solve two second-order nonlinear equations. In phase-field surfactant models, the existences of nonlinear terms lead to high challenges in energy estimation and numerical computation. To deal with these problems, we present first- and second-order time-accurate methods using a new time-dependent auxiliary variable approach. Due to the introduction of a new auxiliary variable, all nonlinear terms are explicitly solved. The energy dissipation law can be proved. To achieve linear and totally decoupled computation, we describe an efficient splitting algorithm. Various two- and three-dimensional computational tests are presented to show that our proposed schemes have desired accuracy, energy dissipation property, and work well for surfactant-laden coarsening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. James AJ, Lowengrub J (2014) A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant. J Comput Phys 201(2):685–772

    Article  MathSciNet  MATH  Google Scholar 

  2. Cleret de Langavant C, Guittet A, Theillard M, Temprano-Coleto F, Gibou F (2017) Level-set simulations of soluble surfactant deriven flows. J Comput Phys 348:271–297

    Article  MathSciNet  MATH  Google Scholar 

  3. Xu JJ, Shi W, Lai MC (2018) A level-set method for two-phase flows with soluble surfactant. J Comput Phys 353:336–355

    Article  MathSciNet  MATH  Google Scholar 

  4. Hu WF, Lai MC, Misbah C (2018) A coupled immersed boundary and immersed interface method for interfacial flows with soluble surfactant. Comput Fluids 168:201–215

    Article  MathSciNet  MATH  Google Scholar 

  5. Seol Y, Hsu SH, Lai MC (2018) An immersed boundary method for simulating interfacial flows with insoluble surfactant in three dimensions. Commun Comput Phys 23:640–664

    Article  MathSciNet  MATH  Google Scholar 

  6. Laradji M, Guo H, Grant M, Zuckermann MJ (1992) The effect of surfactants on the dynamics of phase separation. J Phys Condens Matter 32(4):6715

    Article  Google Scholar 

  7. Guo Z, Yu F, Lin P, Wise S, Lowengrub J (2021) A diffuse domain method for two-phase flows with large density ratio in complex geometries. J Fluid Mech 907:A38

    Article  MathSciNet  MATH  Google Scholar 

  8. Rebholz L, Wise SM, Xiao M (2018) Penalty-projection schemes for the Cahn-Hilliard-Navier-Stokes diffuse interface model of two phase flow and their connection to divergence-free schemes. Int J Numer Anal Model 15:649–676

    MathSciNet  MATH  Google Scholar 

  9. Yang J, Kim J (2020) An unconditionally stable second-order accurate method for systems of Cahn-Hilliard equations. Commun Nonlinear Sci Numer Simulat 87:105276

    Article  MathSciNet  MATH  Google Scholar 

  10. Liang H, Shi BC, Chai ZH (2016) Lattice Boltzmann modeling of three-phase incompressible flows. Phys Rev E 93:013308

    Article  MathSciNet  Google Scholar 

  11. Liang H, Xu J, Chen J, Chai Z, Shi B (2019) Lattice Boltzmann modeling of wall-bounded ternary fluid flows. Appl Math Model 73:487–513

    Article  MathSciNet  MATH  Google Scholar 

  12. Kim J (2006) Numerical simulations of phase separation dynamics in a water-oil-surfactant system. J Colloid Interf Sci 303:272–279

    Article  Google Scholar 

  13. Gu S, Zhang H, Zhang Z (2014) An energy-stable finite-difference scheme for the binary fluid-surfactant system. J Comput Phys 270:416–431

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen W, Wang C, Wang S, Wang X, Wise SM (2020) Energy stable numerical schemes for ternary Cahn-Hilliard system. J Sci Comput 84:27

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheng K, Wang C, Wise SM (2020) A weakly nonlinear, energy stable scheme for the strongly anisotropic Cahn-Hilliard equation and its convergence analysis. J Comput Phys 405:109109

    Article  MathSciNet  MATH  Google Scholar 

  16. Shin J, Lee HG (2021) A linear, high-order, and unconditionally energy stable scheme for the epitaxial thin film growth model without slope selection. Appl Numer Math 163:30–42

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu Z, Li X (2020) Efficient modified stabilized invariant energy quadratization approaches for phase-field crystal equation. Numer Algor 85:107–132

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu Z, Li X (2019) Efficient modified techniques of invariant energy quadratization approach for gradient flows. Appl Math Lett 98:206–214

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu Z, Li X (2020) The exonential scalr auxiliary variable (E-SAV) approach for phase field models and its explicit computing. SIAM J Sci Comput 42(3):B630–B655

    Article  MATH  Google Scholar 

  20. Zhang C, Ouyang J, Wang C, Wise SM (2020) Numerical comparison of modified-energy stable SAV-type schemes and classical BDF methods on benchmark problems for the functionalized Cahn-Hilliard equation. J Comput Phys 423:109772

    Article  MathSciNet  MATH  Google Scholar 

  21. Li Q, Mei L (2021) Efficient, decoupled, and second-order unconditionally energy stable numerical schemes for the coupled Cahn-Hilliard system in copolymer/homopolymer mixtures. Comput Phys Commun 260:107290

    Article  MathSciNet  Google Scholar 

  22. Yang J, Kim J (2021) An improved scalar auxiliary variable (SAV) approach for the phase-field surfactant model. Appl Math Model 90:11–29

    Article  MathSciNet  MATH  Google Scholar 

  23. Qin Y, Xu Z, Zhang H, Zhang Z (2020) Fully decoupled, linear and unconditionally energy stable schemes for the binary fluid-surfactant model. Commun Comput Phys 28:1389–1414

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhu G, Kou J, Yao J, Li A, Sun S (2020) A phase-field moving contact line model with soluble surfactants. J Comput Phys 405:109170

    Article  MathSciNet  MATH  Google Scholar 

  25. Aihara B, Takaki T, Takada D (2019) Multi-phase-field modeling using a conservative Allen-Cahn equation for multiphase flow. Comput Fluid 178:141–151

    Article  MathSciNet  MATH  Google Scholar 

  26. Begmohammadi A, Haghani-Hassan-Abadi R, Fakhari A, Bolster D (2020) Study of phase-field lattice Boltzmann models based on the conservative Allen-Cahn equation. Phys Rev E 102:023305

    Article  MathSciNet  Google Scholar 

  27. Weng Z, Zhuang Q (2017) Numerical approximation of the conservative Allen-Cahn equation by operator splitting method. Math Methods Appl Sci 40(12):4462–4480

    Article  MathSciNet  MATH  Google Scholar 

  28. Huang Z, Lin G, Ardekani AM (2020) Consistent and conservative scheme for incompressible two-phase flows using the conservative Allen-Cahn model. J Comput Phys 420:109718

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang J, Jeong D, Kim J (2021) A fast and practical adaptive finite difference method for the conservative Allen-Cahn model in two-phase flow system. Int J Multiphase Flow 137:103561

    Article  MathSciNet  Google Scholar 

  30. Zheng L, Zheng S, Zhai Q (2020) Multiphase flows of \(N\) immiscible incompressible fluids: conservative Allen-Cahn equation and lattice Boltzmann equation method. Phys Rev E 101:013305

    Article  Google Scholar 

  31. Yang J, Kim J (2021) A variant of stabilized-scalar auxiliary variable (S-SAV) approach for a modified phase-field surfactant model. Comput Phys Commun 261:107825

    Article  MathSciNet  Google Scholar 

  32. Liao HL, Tang T, Zhou T (2020) On energy stable, miximum-pribciple preserving, second-order BDF scheme with variable steps for the Allen-Cahn equation. SIAM J Numer Anal 58(4):2294–2314

    Article  MathSciNet  MATH  Google Scholar 

  33. Shen J, Xu J, Yang J (2018) The scalar auxiliary variable (SAV) approach for gradient flows. J Comput Phys 353:407–416

    Article  MathSciNet  MATH  Google Scholar 

  34. Cheng Q, Liu C, Shen J (2020) A new Lagrange multiplier approach for gradient flows. Comput Methods Appl Mech Eng 367:113070

    Article  MathSciNet  MATH  Google Scholar 

  35. Han S, Ye Q, Yang X (2021) Highly efficient and stable numerical algorithms for a two-component phase-field crystal model for binary alloys. J Comput Appl Math 390:113371

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang X (2021) A novel fully-decoupled, second-order time-accurate, unconditionally energy stable scheme for a flow-coupled volume-conserved phase-field elastic bending energy model. J Comput Phys 432:110015

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang X (2021) On a novel fully-decoupled, linear and second-order accurate numerical scheme for the Cahn-Hilliard-Darcy system of two-phase Hele-Shaw flow. Comput Phys Commun 263:107868

    Article  MathSciNet  Google Scholar 

  38. Shin J, Kim S, Lee D, Kim J (2013) A parallel multigrid method of the Cahn-Hilliard equation. Comput Mater Sci 71:89–96

    Article  Google Scholar 

  39. Sun M, Feng X, Wang K (2020) Numerical simulation of binary fluid-surfactant phase field model coupled with geometric curvature on the curved surface. Comput Methods Appl Mech Eng 367:113123

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang M, Xiao X, Feng X (2020) Numerical simulations for the predator-prey model on surfaces with lumped mass method. Eng Comput. https://doi.org/10.1007/s00366-019-00929-4

  41. Qiao Y, Qian L, Feng X (2021) Fast numerical approximation for the space-fractional semilinear parabolic equations on surfaces. Eng Comput. https://doi.org/10.1007/s00366-021-01357-z

Download references

Acknowledgements

The corresponding author (J.S. Kim) is supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2019R1A2C1003053). The authors wish to thank the reviewers for the constructive and helpful comments on the revision of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junseok Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Kim, J. Efficient and structure-preserving time-dependent auxiliary variable method for a conservative Allen–Cahn type surfactant system. Engineering with Computers 38, 5231–5250 (2022). https://doi.org/10.1007/s00366-021-01583-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01583-5

Keywords

Navigation