Skip to main content
Log in

An efficient hybrid approach based on Harris Hawks optimization and imperialist competitive algorithm for structural optimization

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, a new hybrid algorithm is introduced, combining two Harris Hawks Optimizer (HHO) and the Imperialist Competitive Algorithm (ICA) to achieve a better search strategy. HHO is a new population-based, nature-inspired optimization algorithm that mimics Harris Hawks cooperative behavior and chasing style in nature called surprise pounce HHO. It is a robust algorithm in exploitation, but has an unfavorable performance in exploring the search space, while ICA has a better performance in exploration; thus, combining these two algorithms produces an effective hybrid algorithm. The hybrid algorithm is called Imperialist Competitive Harris Hawks Optimization (ICHHO). The proposed hybrid algorithm's effectiveness is examined by comparing other nature-inspired techniques, 23 mathematical benchmark problems, and several well-known structural engineering problems. The results successfully indicate the proposed hybrid algorithm's competitive performance compared to HHO, ICA, and some other well-established algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Faris H, Ala’M AZ, Heidari AA, Aljarah I, Mafarja M, Hassonah MA, Fujita H (2019) An intelligent system for spam detection and identification of the most relevant features based on evolutionary random weight networks. Information Fusion 48:67–83

    Article  Google Scholar 

  2. Wu G (2016) Across neighborhood search for numerical optimization. Inf Sci 329:597–618

    Article  Google Scholar 

  3. Kaveh A, Dadras Eslamlou A (2020) Metaheuristic optimization algorithms in civil engineering: new applications. Springer, Switzerland

    Book  Google Scholar 

  4. Dréo J, Pétrowski A, Siarry P, Taillard E (2006) Metaheuristics for hard optimization: methods and case studies. Springer Science and Business Media, p 369

  5. Talbi E-G (2009) Metaheuristics: from design to implementation. John Wiley and Sons 74

  6. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  Google Scholar 

  7. Luo J, Chen H, Xu Y, Huang H, Zhao X (2018) An improved grasshopper optimization algorithm with application to financial stress prediction. Appl Math Model 64:654–668. https://doi.org/10.1016/j.apm.2018.07.044

    Article  MathSciNet  MATH  Google Scholar 

  8. Shen L, Chen H, Yu Z, Kang W, Zhang B, Li H, Yang B, Liu D (2016) Evolving support vector machines using fruit fly optimization for medical data classification. Knowl-Based Syst 96:61–75. https://doi.org/10.1016/j.knosys.2016.01.002

    Article  Google Scholar 

  9. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  10. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73

    Article  Google Scholar 

  11. Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  12. Kennedy J, Eberhart R (1995) Particle swarm optimization In: Proceedings of ICNN'95: international conference on neural networks, 27 Nov.-1 Dec. 1995 1995 1942–1948, 1944

  13. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Transactions Syst Man Cyber Part B (Cybernetics) 26(1):29–41. https://doi.org/10.1109/3477.484436

    Article  Google Scholar 

  14. Kaveh A, Dadras Eslamlou A (2020) Water strider algorithm: a new metaheuristic and applications. In: Structures. Elsevier, 520–541

  15. Cuevas E, Fausto F, González A (2020) A swarm algorithm inspired by the collective animal behavior. In: Cuevas E, Fausto F, González A (eds) New advancements in swarm algorithms: operators and applications. Springer International Publishing, Cham, pp 161–188

    Chapter  Google Scholar 

  16. Tahani M, Babayan N (2019) Flow regime algorithm (FRA): a physics-based meta-heuristics algorithm. Knowl Inf Syst 60(2):1001–1038. https://doi.org/10.1007/s10115-018-1253-3

    Article  Google Scholar 

  17. Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili S (2019) Henry gas solubility optimization: a novel physics-based algorithm. Future Gen Comp Syst 101:646–667. https://doi.org/10.1016/j.future.2019.07.015

    Article  Google Scholar 

  18. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612. https://doi.org/10.1016/j.asoc.2012.11.026

    Article  Google Scholar 

  19. Glover F (1989) Tabu search—part I. ORSA J Comput 1(3):190–206. https://doi.org/10.1287/ijoc.1.3.190

    Article  MATH  Google Scholar 

  20. Kumar M, Kulkarni AJ, Satapathy SC (2018) Socio evolution and learning optimization algorithm: a socio-inspired optimization methodology. Future Gen Comp Syst 81:252–272. https://doi.org/10.1016/j.future.2017.10.052

    Article  Google Scholar 

  21. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE congress on evolutionary computation, pp. 4661–4667. IEEE.

  22. Ting T, Yang X-S, Cheng S, Huang K (2015) Hybrid metaheuristic algorithms: past, present, and future. In: Recent advances in swarm intelligence and evolutionary computation. Springer, pp. 71–83

  23. Talbi E-G (2002) A taxonomy of hybrid metaheuristics. J Heurist 8(5):541–564. https://doi.org/10.1023/A:1016540724870

    Article  Google Scholar 

  24. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris Hawks optimization: algorithm and applications. Future Gen Comp Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  25. Sadollah A, Sayyaadi H, Yadav A (2018) A dynamic metaheuristic optimization model inspired by biological nervous systems: Neural network algorithm. Appl Soft Comput 71:747–782. https://doi.org/10.1016/j.asoc.2018.07.039

    Article  Google Scholar 

  26. Gümüş DB, Özcan E, Atkin J (2016) An Analysis of the Taguchi Method for Tuning a Memetic Algorithm with Reduced Computational Time Budget. In, Cham Computer and Information Sciences. Springer International Publishing, pp. 12–20

  27. Hussain K, Salleh MNM, Cheng S, Shi Y (2019) On the exploration and exploitation in popular swarm-based metaheuristic algorithms. Neural Comput Appl 31(11):7665–7683. https://doi.org/10.1007/s00521-018-3592-0

    Article  Google Scholar 

  28. Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search algorithm. Comput Struct 82(9–10):781–798. https://doi.org/10.1016/j.compstruc.2004.01.002

    Article  Google Scholar 

  29. Li L, Huang Z, Liu F, Wu Q (2007) A heuristic particle swarm optimizer for optimization of pin connected structures. Comput Struct 85(7–8):340–349. https://doi.org/10.1016/j.compstruc.2006.11.020

    Article  Google Scholar 

  30. Kaveh A, Talatahari S (2009) Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Comput Struct 87(5–6):267–283. https://doi.org/10.1016/j.compstruc.2009.01.003

    Article  Google Scholar 

  31. Kaveh A, Ilchi Ghazaan M (2015) A comparative study of CBO and ECBO for optimal design of skeletal structures. Comput Struct 153:137–147. https://doi.org/10.1016/j.compstruc.2015.02.028

    Article  Google Scholar 

  32. Kaveh A, Bakhshpoori T (2016) An accelerated water evaporation optimization formulation for discrete optimization of skeletal structures. Comput Struct 177:218–228. https://doi.org/10.1016/j.compstruc.2016.08.006

    Article  Google Scholar 

  33. Kaveh A, Mahdavi VR (2014) Colliding bodies optimization: a novel meta-heuristic method. Comput Struct 139:18–27. https://doi.org/10.1016/j.compstruc.2014.04.005

    Article  Google Scholar 

  34. Kaveh A, Moradveisi M (2016) Optimal design of double-layer barrel vaults using CBO and ECBO algorithms. Iran J Sci Technol Transactions Civil Eng 40(3):167–178. https://doi.org/10.1007/s40996-016-0021-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kaveh.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaveh, A., Rahmani, P. & Eslamlou, A.D. An efficient hybrid approach based on Harris Hawks optimization and imperialist competitive algorithm for structural optimization. Engineering with Computers 38 (Suppl 2), 1555–1583 (2022). https://doi.org/10.1007/s00366-020-01258-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01258-7

Keywords

Navigation