Skip to main content
Log in

Nonlinear dynamics and vibration of reinforced piezoelectric scale-dependent plates as a class of nonlinear Mathieu–Hill systems: parametric excitation analysis

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This work is motivated by little research in the nonlinear dynamic instability of the reinforced piezoelectric nanoplates. This paper, using an analytical approach, presents bifurcations in the nonlinear dynamic instability of the reinforced piezoelectric nanoplates caused by the parametric excitation. An axial parametric load is applied to excite the system, while the reinforced piezoelectric nanoplate is under an applied electric voltage, simultaneously. The governing equations of motion for the reinforced piezoelectric nanoplate embedded on a visco-Pasternak foundation are derived using the nonlocal elasticity theory, Hamilton’s principle, and nonlinear von Karman theory. A class of nonlinear the Mathieu–Hill equation is established to determine the bifurcations and the regions of the nonlinear dynamic instability. The numerical results are performed, while the emphasis is placed on investigating the effect of the applied electric voltage, visco-Pasternak foundation coefficients, and the parametric excitation. It is found that the damping coefficient is responsible of the bifurcation point variation, while the amplitude response depends on the term of the natural frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kane CL, Mele EJ (1997) Size, shape, and low energy electronic structure of carbon nanotubes. Phys Rev Lett 78(10):1932

    Google Scholar 

  2. Maiti A, Svizhenko A, Anantram MP (2002) Electronic transport through carbon nanotubes: effects of structural deformation and tube chirality. Phys Rev Lett 88(12):126805

    Google Scholar 

  3. Arash B, Wang Q (2013) Detection of gas atoms with carbon nanotubes. Sci Rep 3:1782

    Google Scholar 

  4. Potekin R, Kim S, McFarland DM, Bergman LA, Cho H, Vakakis AF (2018) A micromechanical mass sensing method based on amplitude tracking within an ultra-wide broadband resonance. Nonlinear Dyn 92(2):287–304

    Google Scholar 

  5. Mahmoud MA (2016) Validity and accuracy of resonance shift prediction formulas for microcantilevers: a review and comparative study. Crit Rev Solid State Mater Sci 41(5):386–429

    Google Scholar 

  6. Ji Y, Choe M, Cho B, Song S, Yoon J, Ko HC, Lee T (2012) Organic nonvolatile memory devices with charge trapping multilayer graphene film. Nanotechnology 23(10):105202

    Google Scholar 

  7. Jeong S, Cho JY, Sung TH, Yoo HH (2017) Electromechanical modeling and power performance analysis of a piezoelectric energy harvester having an attached mass and a segmented piezoelectric layer. Smart Mater Struct 26(3):035035

    Google Scholar 

  8. Khoo SY, Radeef ZS, Ong ZC, Huang YH, Chong WT, Ismail Z (2017) Structural dynamics effect on voltage generation from dual coupled cantilever based piezoelectric vibration energy harvester system. Measurement 107:41–52

    Google Scholar 

  9. Zhang J, Fang Z, Shu C, Zhang J, Zhang Q, Li C (2017) A rotational piezoelectric energy harvester for efficient wind energy harvesting. Sens Actuators A 262:123–129

    Google Scholar 

  10. Song J, Hu G, Tse KT, Li SW, Kwok KCS (2017) Performance of a circular cylinder piezoelectric wind energy harvester fitted with a splitter plate. Appl Phys Lett 111(22):223903

    Google Scholar 

  11. Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10(3):233–248

    MathSciNet  MATH  Google Scholar 

  12. Eringen AC (1983) Theories of nonlocal plasticity. Int J Eng Sci 21(7):741–751

    MathSciNet  MATH  Google Scholar 

  13. Ghadiri M, Shafiei N, Akbarshahi A (2016) Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam. Appl Phys A 122(7):673

    Google Scholar 

  14. Sahmani S, Fattahi AM (2017) Nonlocal size dependency in nonlinear instability of axially loaded exponential shear deformable FG-CNT reinforced nanoshells under heat conduction. Eur Phys J Plus 132(5):231

    Google Scholar 

  15. Ebrahimi F, Hosseini SHS, Bayrami SS (2019) Nonlinear forced vibration of pre-stressed graphene sheets subjected to a mechanical shock: an analytical study. Thin Walled Struct 141:293–307

    Google Scholar 

  16. Barretta R, Feo L, Luciano R, de Sciarra FM (2015) Variational formulations for functionally graded nonlocal Bernoulli–Euler nanobeams. Compos Struct 129:80–89

    Google Scholar 

  17. Ebrahimi F, Hosseini SHS (2016) Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates. J Therm Stress 39(5):606–625

    Google Scholar 

  18. Kolahchi R, Zarei MS, Hajmohammad MH, Oskouei AN (2017) Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods. Thin Walled Struct 113:162–169

    Google Scholar 

  19. Kolahchi R (2017) A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods. Aerosp Sci Technol 66:235–248

    Google Scholar 

  20. Asemi SR, Farajpour A, Mohammadi M (2014) Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory. Compos Struct 116:703–712

    Google Scholar 

  21. Ghorbanpour-Arani A, Kolahdouzan F, Abdollahian M (2018) Nonlocal buckling of embedded magnetoelectroelastic sandwich nanoplate using refined zigzag theory. Appl Math Mech 39(4):529–546

    MathSciNet  Google Scholar 

  22. Karami B, Shahsavari D, Li L, Karami M, Janghorban M (2018) Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory. Proc Inst Mech Eng Part C J Mech Eng Sci. https://doi.org/10.1177/0954406218756451

    Article  Google Scholar 

  23. Bouadi A, Bousahla AA, Houari MSA, Heireche H, Tounsi A (2018) A new nonlocal HSDT for analysis of stability of single layer graphene sheet. Adv Nano Res 6(2):147–162

    Google Scholar 

  24. Karami B, Janghorban M, Tounsi A (2018) Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles. Steel Compos Struct 27(2):201–216

    Google Scholar 

  25. Hamza-Cherif R, Meradjah M, Zidour M, Tounsi A, Belmahi S, Bensattalah T (2018) Vibration analysis of nano beam using differential transform method including thermal effect. J Nano Res 54:1–14

    Google Scholar 

  26. Semmah A, Heireche H, Bousahla AA, Tounsi A (2019) Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT. Adv Nano Res 7(2):89

    Google Scholar 

  27. Kadari B, Bessaim A, Tounsi A, Heireche H, Bousahla AA, Houari MSA (2018) Buckling analysis of orthotropic nanoscale plates resting on elastic foundations. J Nano Res 55:42–56

    Google Scholar 

  28. Mokhtar Y, Heireche H, Bousahla AA, Houari MSA, Tounsi A, Mahmoud SR (2018) A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory. Smart Struct Syst 21(4):397–405

    Google Scholar 

  29. Youcef DO, Kaci A, Benzair A, Bousahla AA, Tounsi A (2018) Dynamic analysis of nanoscale beams including surface stress effects. Smart Struct Syst 21(1):65–74

    Google Scholar 

  30. Karami B, Janghorban M, Shahsavari D, Tounsi A (2018) A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates. Steel Compos Struct 28(1):99–110

    Google Scholar 

  31. Yazid M, Heireche H, Tounsi A, Bousahla AA, Houari MSA (2018) A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium. Smart Struct Syst 21(1):15–25

    Google Scholar 

  32. Boutaleb S, Benrahou KH, Bakora A, Algarni A, Bousahla AA, Tounsi A, Mahmoud SR (2019) Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT. Adv Nano Res 7(3):191–208

    Google Scholar 

  33. Karami B, Janghorban M, Tounsi A (2017) Effects of triaxial magnetic field on the anisotropic nanoplates. Steel Compos Struct 25(3):361–374

    Google Scholar 

  34. Bellifa H, Benrahou KH, Bousahla AA, Tounsi A, Mahmoud SR (2017) A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams. Struct Eng Mech 62(6):695–702

    Google Scholar 

  35. Karami B, Janghorban M, Tounsi A (2018) Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory. Thin Walled Struct 129:251–264

    Google Scholar 

  36. Karami B, Janghorban M, Tounsi A (2019) On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model. Struct Eng Mech 69(5):487–497

    Google Scholar 

  37. Ghadiri M, Hosseini SHS (2019) Parametrically excited nonlinear dynamic instability of reinforced piezoelectric nanoplates. Eur Phys J Plus 134(8):413

    Google Scholar 

  38. Ebrahimi F, Hosseini SHS (2019) Nonlinear vibration and dynamic instability analysis nanobeams under thermo-magneto-mechanical loads: a parametric excitation study. Eng Comput. https://doi.org/10.1007/s00366-019-00830-0

    Article  Google Scholar 

  39. Khetir H, Bouiadjra MB, Houari MSA, Tounsi A, Mahmoud SR (2017) A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates. Struct Eng Mech 64(4):391–402

    Google Scholar 

  40. Mouffoki A, Bedia EA, Houari MSA, Tounsi A, Mahmoud SR (2017) Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory. Smart Struct Syst 20(3):369–383

    Google Scholar 

  41. Zemri A, Houari MSA, Bousahla AA, Tounsi A (2015) A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory. Struct Eng Mech 54(4):693–710

    Google Scholar 

  42. Liu C, Ke LL, Yang J, Kitipornchai S, Wang YS (2016) Buckling and post-buckling analyses of size-dependent piezoelectric nanoplates. Theor Appl Mech Lett 6(6):253–267

    Google Scholar 

  43. Li C, Liu JJ, Cheng M, Fan XL (2017) Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces. Compos B Eng 116:153–169

    Google Scholar 

  44. Gholami R, Ansari R (2018) Size-dependent geometrically nonlinear free vibration of first-order shear deformable piezoelectric-piezomagnetic nanobeams using the nonlocal theory. Adv Appl Math Mech 10(1):184–208

    MathSciNet  Google Scholar 

  45. Gholami R, Ansari R (2017) A unified nonlocal nonlinear higher-order shear deformable plate model for postbuckling analysis of piezoelectric-piezomagnetic rectangular nanoplates with various edge supports. Compos Struct 166:202–218

    Google Scholar 

  46. Li HB, Li YD, Wang X, Huang X (2015) Nonlinear vibration characteristics of graphene/piezoelectric sandwich films under electric loading based on nonlocal elastic theory. J Sound Vib 358:285–300

    Google Scholar 

  47. Arani AG, Abdollahian M, Kolahchi R (2015) Nonlinear vibration of a nanobeam elastically bonded with a piezoelectric nanobeam via strain gradient theory. Int J Mech Sci 100:32–40

    Google Scholar 

  48. Arani AG, Zamani MH (2018) Nonlocal free vibration analysis of FG-porous shear and normal deformable sandwich nanoplate with piezoelectric face sheets resting on silica aerogel foundation. Arab J Sci Eng 43:4675–4688

    Google Scholar 

  49. Sobhy M, Zenkour AM (2018) Magnetic field effect on thermomechanical buckling and vibration of viscoelastic sandwich nanobeams with CNT reinforced face sheets on a viscoelastic substrate. Compos B Eng 154:492–506

    Google Scholar 

  50. Zeng S, Wang BL, Wang KF (2019) Nonlinear vibration of piezoelectric sandwich nanoplates with functionally graded porous core with consideration of flexoelectric effect. Compos Struct 207:340–351

    Google Scholar 

  51. Ghorbanpour Arani A, Jamali M, Ghorbanpour-Arani AH, Kolahchi R, Mosayyebi M (2017) Electro-magneto wave propagation analysis of viscoelastic sandwich nanoplates considering surface effects. Proc Inst Mech Eng Part C J Mech Eng Sci 231(2):387–403

    Google Scholar 

  52. Ebrahimi F, Dabbagh A (2018) On thermo-mechanical vibration analysis of multi-scale hybrid composite beams. J Vib Control. https://doi.org/10.1177/1077546318806800

    Article  Google Scholar 

  53. Ghorbanpour Arani A, Zamani MH (2017) Investigation of electric field effect on size-dependent bending analysis of functionally graded porous shear and normal deformable sandwich nanoplate on silica aerogel foundation. J Sandw Struct Mater. https://doi.org/10.1177/1099636217721405

    Article  Google Scholar 

  54. Karami B, Shahsavari D, Li L, Karami M, Janghorban M (2019) Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory. Proc Inst Mech Eng Part C J Mech Eng Sci 233(1):287–301

    Google Scholar 

  55. Liu C, Ke LL, Wang YS, Yang J (2015) Nonlinear vibration of nonlocal piezoelectric nanoplates. Int J Struct Stab Dyn 15(08):1540013

    MathSciNet  MATH  Google Scholar 

  56. Liu C, Ke LL, Yang J, Kitipornchai S, Wang YS (2018) Nonlinear vibration of piezoelectric nanoplates using nonlocal Mindlin plate theory. Mech Adv Mater Struct 25(15–16):1252–1264

    Google Scholar 

  57. Ma LH, Ke LL, Wang YZ, Wang YS (2018) Wave propagation analysis of piezoelectric nanoplates based on the nonlocal theory. Int J Struct Stab Dyn 18(04):1850060

    MathSciNet  Google Scholar 

  58. Sladek J, Sladek V, Hrcek S, Pan E (2017) The nonlocal and gradient theories for a large deformation of piezoelectric nanoplates. Compos Struct 172:119–129

    Google Scholar 

  59. Wang YQ, Zu JW (2017) Porosity-dependent nonlinear forced vibration analysis of functionally graded piezoelectric smart material plates. Smart Mater Struct 26(10):105014

    Google Scholar 

  60. Zenkour AM, Sobhy M (2018) Nonlocal piezo-hygrothermal analysis for vibration characteristics of a piezoelectric Kelvin–Voigt viscoelastic nanoplate embedded in a viscoelastic medium. Acta Mech 229(1):3–19

    MathSciNet  MATH  Google Scholar 

  61. Zhu J, Lv Z, Liu H (2019) Thermo-electro-mechanical vibration analysis of nonlocal piezoelectric nanoplates involving material uncertainties. Compos Struct 208:771–783

    Google Scholar 

  62. She GL, Jiang XY, Karami B (2019) On thermal snap-buckling of FG curved nanobeams. Mater Res Express 6(11):115008

    Google Scholar 

  63. She GL, Yuan FG, Karami B, Ren YR, Xiao WS (2019) On nonlinear bending behavior of FG porous curved nanotubes. Int J Eng Sci 135:58–74

    MathSciNet  MATH  Google Scholar 

  64. She GL, Ren YR, Yan KM (2019) On snap-buckling of porous FG curved nanobeams. Acta Astronautica 161:475–484. https://doi.org/10.1016/j.actaastro.2019.04.010

    Article  Google Scholar 

  65. Bakhadda B, Bouiadjra MB, Bourada F, Bousahla AA, Tounsi A, Mahmoud SR (2018) Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation. Wind Struct 27(5):311–324

    Google Scholar 

  66. Draoui A, Zidour M, Tounsi A, Adim B (2019) Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT). J Nano Res 57:117–135

    Google Scholar 

  67. Karami B, Janghorban M, Tounsi A (2019) Galerkin’s approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions. Eng Comput 35(4):1297–1316

    Google Scholar 

  68. Khiloun M, Bousahla AA, Kaci A, Bessaim A, Tounsi A, Mahmoud SR (2019) Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT. Eng Comput. https://doi.org/10.1007/s00366-019-00732-1

    Article  Google Scholar 

  69. Attia A, Bousahla AA, Tounsi A, Mahmoud SR, Alwabli AS (2018) A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations. Struct Eng Mech 65(4):453–464

    Google Scholar 

  70. Boukhlif Z, Bouremana M, Bourada F, Bousahla AA, Bourada M, Tounsi A, Al-Osta MA (2019) A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation. Steel Compos Struct 31(5):503–516

    Google Scholar 

  71. Boulefrakh L, Hebali H, Chikh A, Bousahla AA, Tounsi A, Mahmoud SR (2019) The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate. Geomech Eng 18(2):161–178

    Google Scholar 

  72. Beldjelili Y, Tounsi A, Mahmoud SR (2016) Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory. Smart Struct Syst 18(4):755–786

    Google Scholar 

  73. Bounouara F, Benrahou KH, Belkorissat I, Tounsi A (2016) A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation. Steel Compos Struct 20(2):227–249

    Google Scholar 

  74. Zaoui FZ, Ouinas D, Tounsi A (2019) New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations. Compos B Eng 159:231–247

    Google Scholar 

  75. Jalaei MH, Thai HT (2019) Dynamic stability of viscoelastic porous FG nanoplate under longitudinal magnetic field via a nonlocal strain gradient quasi-3D theory. Compos Part B Eng 175(1):107164. https://doi.org/10.1016/j.compositesb.2019.107164

    Article  Google Scholar 

  76. Jalaei MH, Civalek Ö (2019) A nonlocal strain gradient refined plate theory for dynamic instability of embedded graphene sheet including thermal effects. Compos Struct 220:209–220

    Google Scholar 

  77. Huang Y, Fu J, Liu A (2018) Dynamic instability of Euler-Bernoulli nanobeams subject to parametric excitation. Compos Part B Eng 164:226–234. https://doi.org/10.1016/j.compositesb.2018.11.088

    Article  Google Scholar 

  78. Kolahchi R, Hosseini H, Esmailpour M (2016) Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories. Compos Struct 157:174–186

    Google Scholar 

  79. Ebrahimi F, Hosseini SHS (2017) Surface effects on nonlinear dynamics of NEMS consisting of double-layered viscoelastic nanoplates. Eur Phys J Plus 132(4):172

    Google Scholar 

  80. Barati MR (2017) Nonlocal microstructure-dependent dynamic stability of refined porous FG nanoplates in hygro-thermal environments. Eur Phys J Plus 132(10):434

    Google Scholar 

  81. Sahmani S, Bahrami M (2015) Nonlocal plate model for dynamic pull-in instability analysis of circular higher-order shear deformable nanoplates including surface stress effect. J Mech Sci Technol 29(3):1151–1161

    Google Scholar 

  82. Yang WD, Yang FP, Wang X (2017) Dynamic instability and bifurcation of electrically actuated circular nanoplate considering surface behavior and small scale effect. Int J Mech Sci 126:12–23

    Google Scholar 

  83. Krylov S, Harari I, Cohen Y (2005) Stabilization of electrostatically actuated microstructures using parametric excitation. J Micromech Microeng 15(6):1188

    Google Scholar 

  84. Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10(1):1–16

    MathSciNet  MATH  Google Scholar 

  85. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710

    Google Scholar 

  86. Reddy JN (2013) An introduction to continuum mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  87. Reddy JN (2006) Theory and analysis of elastic plates and shells. CRC Press, Boca Raton

    Google Scholar 

  88. Ke LL, Wang YS (2012) Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory. Smart Mater Struct 21:025018

    Google Scholar 

  89. Lakes R, Lakes RS (2009) Viscoelastic materials. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  90. Wang Y, Li FM, Wang YZ (2015) Nonlinear vibration of double layered viscoelastic nanoplates based on nonlocal theory. Physica E 67:65–76

    Google Scholar 

  91. Arani AG, Shiravand A, Rahi M, Kolahchi R (2012) Nonlocal vibration of coupled DLGS systems embedded on Visco-Pasternak foundation. Physica B Condens Matter 407(21):4123–4131

    Google Scholar 

  92. Raju IS, Rao GV, Raju KK (1976) Effect of longitudinal or inplane deformation and inertia on the large amplitude flexural vibrations of slender beams and thin plates. J Sound Vib 49(3):415–422

    MATH  Google Scholar 

  93. Shen LE, Shen HS, Zhang CL (2010) Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments. Comput Mater Sci 48(3):680–685

    Google Scholar 

  94. Nayfeh AH, Mook DT (2008) Nonlinear oscillations. Wiley, New York

    MATH  Google Scholar 

  95. Pradhan SC, Phadikar JK (2009) Nonlocal elasticity theory for vibration of nanoplates. J Sound Vib 325(1–2):206–223

    Google Scholar 

  96. Arani AG, Kolahchi R, Barzoki AAM, Mozdianfard MR, Farahani SMN (2013) Elastic foundation effect on nonlinear thermo-vibration of embedded double-layered orthotropic graphene sheets using differential quadrature method. Proc Inst Mech Eng Part C J Mech Eng Sci 227(4):862–879

    Google Scholar 

  97. Ghadiri M, Hosseini SHS (2019) Parametric excitation of Euler-Bernoulli nanobeams under thermo-magneto-mechanical loads: nonlinear vibration and dynamic instability. Compos Part B Eng 173:106928. https://doi.org/10.1016/j.compositesb.2019.106928

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farzad Ebrahimi or Ali Toghroli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shariati, A., Hosseini, S.H.S., Ebrahimi, F. et al. Nonlinear dynamics and vibration of reinforced piezoelectric scale-dependent plates as a class of nonlinear Mathieu–Hill systems: parametric excitation analysis. Engineering with Computers 37, 2285–2301 (2021). https://doi.org/10.1007/s00366-020-00942-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-00942-y

Keywords

Navigation