Skip to main content

Advertisement

Log in

Optimal mass transport for geometric modeling based on variational principles in convex geometry

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In geometric modeling, surface parameterization plays an important role for converting triangle meshes to spline surfaces. Parameterization will introduce distortions. Conventional parameterization methods emphasize on angle-preservation, which may induce huge area distortions and cause large spline fitting errors and trigger numerical instabilities.To overcome this difficulty, this work proposes a novel area-preserving parameterization method, which is based on an optimal mass transport theory and convex geometry. Optimal mass transport mapping is measure-preserving and minimizes the transportation cost. According to Brenier’s theorem, for quadratic distance transportation costs, the optimal mass transport map is the gradient of a convex function. The graph of the convex function is a convex polyhedron with prescribed normal and areas. The existence and the uniqueness of such a polyhedron have been proved by the Minkowski-Alexandrov theorem in convex geometry. This work gives an explicit method to construct such a polyhedron based on the variational principle, and formulates the solution to the optimal transport map as the unique optimum of a convex energy. In practice, the energy optimization can be carried out using Newton’s method, and each iteration constructs a power Voronoi diagram dynamically. We tested the proposal algorithms on 3D surfaces scanned from real life. Experimental results demonstrate the efficiency and efficacy of the proposed variational approach for the optimal transport map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hormann K, Lévy B, Sheffer A (2007) Mesh parameterization: theory and practice. SIGGRAPH 2007 courses

  2. Hormann K, Polthier K, Sheffer A (2008) Mesh parameterization: theory and practice. SIGGRAPH Asia 2008 courses

  3. Floater Michael S, Hormann K (2005) Surface parameterization: a tutorial and survey. In: Dodgson NA, Floater MS, Sabin MA (eds) Advances in multiresolution for geometric modelling. Springer, Berlin, Heidelberg, pp 157–186

  4. Sheffer A, Praun E, Rose K (2006) Mesh parameterization methods and their applications. Found Trends Comput Graph Vis 2:105–171

    Article  Google Scholar 

  5. Kantorovich LV (1948) On a problem of Monge. Russian Uspekhi Mat Nauk 3:225–226

    Google Scholar 

  6. Haker S, Zhu L, Tannenbaum A, Angenent S (2004) Optimal mass transport for registration and warping. Int J Comput Vis 60:225–240

    Google Scholar 

  7. Zhu L, Haker S, Tannenbaum A (2003) Area-preserving mappings for the visualization of medical structures. MICCAI 2879:277–284

    Google Scholar 

  8. Dominitz A, Tannenbaum A (2010) Texture mapping via optimal mass transport. IEEE TVCG 16:419–433

    Google Scholar 

  9. Rehman T, Haber E, Pryor G, Melonakos J, Tannenbaum A (2004) 3D nonrigid registration via optimal mass transport on the GPU. Med Image Anal 13:931–940

    Article  Google Scholar 

  10. Rehman T, Pryor G, Tannenbaum A (2007) Fast multigrid optimal mass transport for image registration and morphing. British Machine Vision Association

  11. Brenier Y. (1991) Polar factorization and monotone rearrangement of vector-valued functions. Commun Pure Appl Math 64:375–417

    Article  MathSciNet  Google Scholar 

  12. CGAL Computational Geometry Algorithms Library (2013) http://www.cgal.org

  13. Merigot Q (2011) A multiscale approach to optimal transport. Comput Graph Forum 30:1583–1592

    Article  Google Scholar 

  14. Merigot Q (2013) A comparison of two dual methods for discrete optimal transport. In: Nielsen F, Barbaresco F (eds) Geometric science of information, vol 8055, Springer, Berlin, Heidelberg, pp 389–396

  15. Lipman Y, Daubechies I (2009) Surface comparison with mass transportation. arXiv:0912.3488 [math.NA]

  16. Lipman Y, Puente J, Daubechies I (2013) Conformal Wasserstein distance: II. Computational aspects and extensions. J Math Comp 82:331–381

    Article  MathSciNet  MATH  Google Scholar 

  17. Mmoli F (2011) Gromov Wasserstein distances and the metric approach to object matching. Found Comput Math 11:417–487

    Article  MathSciNet  Google Scholar 

  18. Aurenhammer F, Hoffmann F, Aronov B (1998) Minkowski-type theorems and least-squares clustering. Algorithmica 2:61–76

    Article  MathSciNet  Google Scholar 

  19. Gu X, Luo F, Sun J, Yau S-T (2013) Variational principles for Minkowski type problems, discrete optimal transport, and discrete Monge-Ampere equations. arXiv:1302.5472 [math.GT]

  20. de Goes F, Cohen-Steiner D, Alliez P, Desbrun M (2011) An optimal transport approach to robust reconstruction and simplification of 2D shapes. Eurograph Sym Geom Process 30:1593–1602

    Google Scholar 

  21. de Goes F, Breeden K, Ostromoukhov V, Desbrun M (2012) Blue noise through optimal transport. ACM Trans Graph 31(6). Article No. 171

  22. Eck M, De Rose T, Duchamp T, Hoppe H, Lounsbery M, Stuetzle W (1995) Multiresolution analysis of arbitrary meshes. SIGGRAPH:173–182

  23. Floater Michael S. (1997) Parametrization and smooth approximation of surface triangulations. Comput Aid Geom Des 14:231–250

    Article  MATH  Google Scholar 

  24. Floater Michael S (2003) Mean value coordinates. Comput Aid Geom Des 20:19–27

    Article  MATH  Google Scholar 

  25. Lévy B, Petitjean S, Ray N, Maillot J (2002) Least squares conformal maps for automatic texture atlas generation. ACM TOG 21:362–371

    Article  Google Scholar 

  26. Desbrun M, Meyer M, Alliez P (2002) Intrinsic parameterizations of surface meshes. CGF 21:209–218

    Google Scholar 

  27. Sheffer A, De Sturler E (2000) Surface parameterization for meshing by triangulation flattening. In: Proc. 9th International Meshing Roundtable, pp 161–172

  28. Sheffer A, Lévy B, Mogilnitsky M, Bogomyakov A (2005) ABF++: fast and robust angle based flattening. ACM TOG 24:311–330

    Article  Google Scholar 

  29. Hormann K, Greiner G (2000) MIPS: an efficient global parametrization method. Curve Surface Design 1:153–162

    Google Scholar 

  30. Kharevych L, Springborn B, Schröder P (2006) Discrete conformal mappings via circle patterns. ACM TOG 25:412–438

    Article  Google Scholar 

  31. Sander Pedro V, Snyder J, Gortler Steven J, Hoppe H (2001) Texture mapping progressive meshes. In: SIGGRAPH ’01 Proceedings of the 28th annual conference on computer graphics and interactive techniques, pp 409–416

  32. Zigelman G, Kimmel R, Kiryati N (2002) Texture mapping using surface flattening via multidimensional scaling. IEEE TVCG 8:198–207

    Google Scholar 

  33. Degener P, Meseth J, Klein R (2003) An adaptable surface parameterization method. In: Proceedings of the 12th International Meshing Roundtable, pp 201–213

  34. Zou G, Hu J, Gu X, Hua J (2011) Authalic parameterization of general surfaces using Lie advection. IEEE TVCG 17:2005–2014

    Google Scholar 

  35. Aurenhammer F (1987) Power diagrams: properties, algorithms and applications. SIAM J Comput 16:78–96

    Article  MathSciNet  MATH  Google Scholar 

  36. Preparata FP, Hong SJ (1977) Convex hulls of finite sets of points in two and three dimensions. Commun ACM 20:87–93

    MathSciNet  MATH  Google Scholar 

  37. Chazelle B (1993) An optimal convex hull algorithm in any fixed dimension. Disc Comp Geom 10:377–409

    Article  MathSciNet  MATH  Google Scholar 

  38. Clarkson KL, Shor PW (1989) Applications of random sampling in computational geometry, II. Disc Comp Geom 4:387–421

    Article  MathSciNet  MATH  Google Scholar 

  39. Schneider R (1993) Convex bodies: the Brunn-Minkowski theory encyclopedia of mathematics and its applications. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  40. Aleksandrov AD (1958) Convex polyhedra, Mathematische Lehrbücher und Monographien. II. Abt. Bd. 8. Akademie-Verlag. Berlin, x, 419 S. 161 Abb

  41. Gu X (2013) http://www.cs.sunysb.edu/gu/software/RiemannMapper/index.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengyu Su.

Appendix

Appendix

We give a brief proof for the main theorem 3. Details can be found in [19]:

The cell voronoi decomposition has a dual Delaunay triangulation. Suppose, without loss of generality, two cells W i W j are adjacent and they share a common edge e ij . The edge e ij has a dual Delaunay edge \(\bar{e}_{ij}.\) The norm with respect to ρ is defined as

$$|e|_\rho = \int\limits_{e} \rho(x) {\rm d}x,$$
(5)

and |e| is just the traditional Euclidean length.

By direct computation, we can show

$$\frac{\partial w_{i}}{\partial h_{j}} = \frac{\partial w_{j}}{\partial h_{i}} = \frac{|e_{ij}|_\rho}{|\bar{e}_{ij}|}.$$

Proof As shown in Fig. 6, suppose two power diagram cells W i , W j are adjacent to edge e ij  = W i W j . W i has site p i and power h i , and W j has site p j and power h j . Then e ij can be represented by

$$\|x-p_{i}\|_{2} - h_{i} = \|x-p_{j}\|_{2} - h_{j},$$

which induced

$$2\langle p_{j}-p_{i}, x\rangle = h_{i} - h_{j} + \|p_{j}\|_{2} - \|p_{i}\|_{2}.$$
(6)

If we change h i by δ h i e ij will shift by \(\epsilon\) along p j  − p i . Then we get

$$2 \left \langle p_{j}-p_{i}, x + \epsilon\frac{p_{j}-p_{i}}{\|p_{j}-p_{i}\|} \right \rangle = h_{i} + \delta h_{i} - h_{j} + \|p_{j}\|_{2} - \|p_{i}\|_{2}.$$
(7)

By subtracting Eqs. (7) from (6), we can easily get

$$\epsilon = \frac{\delta h_{i}}{2\|p_{j}-p_{i}\|}.$$

Therefore,

$$\delta w_{j} = |e_{ij}|\epsilon + o(\epsilon_{2}) = |e_{ij}|\frac{\delta h_{i}}{2\|p_{j}-p_{i}\|} + o(\epsilon_{2}).$$

And finally,

$$\frac{\delta w_{j}}{\delta h_{i}} = \frac{|e_{ij}|}{2\|p_{j}-p_{i}\|} = \frac{|e_{ij}|}{2|\bar{e}_{ij}|}.$$

The proof for \(\frac{\delta w_{i}}{\delta h_{j}} = \frac{|e_{ij}|}{2|\bar{e}_{ij}|}\) is similar.□

Fig. 6
figure 6

Illustration of the power diagram cell intersections. It shows that when the power of W i changes, the cell W i is enlarged along p j  − p i

Therefore the differential 1-form ω = ∑ k i = 1 w i dh i is a closed 1-form, dω = 0. By Brunn-Minkowski inequality [40], the admissible space

$${{\mathcal{H}}} := \left \{{\bf h}| \forall i, w_{i}({\bf h}) > 0, \sum_{i} h_{i} = 0\right \}$$

is non-empty and convex. Therefore, \(E({\bf h}) = \int^{{\bf h}}\omega\) is well defined. The gradient of E is \((w_{1},\ldots, w_{k}),\) the Hessian matrix of E is as follows. The off diagonal element is given by

$$\frac{\partial_{2} E}{\partial h_{i} \partial h_{j}} = \frac{\partial w_{i}}{\partial h_{j}} = \frac{|e_{ij}|_\rho}{|\bar{e}_{ij}|}.$$
(8)

Because ∑ i w i (h) = const, therefore the diagonal element is given by

$$\frac{\partial w_{i}}{\partial h_{i}} = -\sum_{j\neq i} \frac{\partial w_{i}}{\partial h_{j}},$$
(9)

the negative Hessian matrix is diagonal dominant. So the energy is concave on \({{\mathcal{H}}}.\) Therefore, the gradient map ∇ E: h → w is injective. This shows the uniqueness.

For a given \({\varvec{\mu}},\) we can define the energy

$$E_\mu({\bf h}):= \sum_{i} \mu_{i} h_{i} - \int\limits^{{\bf h}} \omega$$
(10)

which is positive definite. Furthermore, the desired solution is the unique global minimum. The gradients along the boundary of \({{\mathcal{H}}}\) point to the interior, so the minimum is in the interior. This shows the existence.

Note that, in the above theorem, the domain \(\Upomega\) could be infinite, even the entire of \({{\mathbb{R}}^{n}},\) as long as the total volume is finite, such as spherical area-preserving mapping.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Z., Sun, J., Gu, X. et al. Optimal mass transport for geometric modeling based on variational principles in convex geometry. Engineering with Computers 30, 475–486 (2014). https://doi.org/10.1007/s00366-014-0354-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-014-0354-1

keywords

Navigation