Skip to main content
Log in

Finite element analysis of the Girkmann problem using the modern hp-version and the classical h-version

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

We perform finite element analysis of the so called Girkmann problem in structural mechanics. The problem involves an axially symmetric spherical shell stiffened with a foot ring and is approached (1) by using the axisymmetric formulation of linear elasticity theory and (2) by using a dimensionally reduced shell-ring model. In the first approach the problem is solved with a fully automatic hp-adaptive finite element solver whereas the classical h-version of the finite element method is used in the second approach. We study the convergence behaviour of the different numerical models and show that accurate stress resultants can be obtained with both models by using effective post-processing formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ainsworth M, Oden J (2000) A posteriori error estimation in finite element analysis. Wiley, New York

    Book  MATH  Google Scholar 

  2. Andersson B, Falk U (1987) Self-adaptive analysis of three-dimensional structures using a p-version of finite element method. Report FFA TN 1987-31, The Aeronautical Research Institute of Sweden

  3. Andersson B, Falk U, Babuška I, von Petersdorff T (1995) Reliable stress and fracture mechanics analysis of complex components using a h − p version of FEM. Int J Numer Methods Eng 38:2135–2163

    Article  MATH  Google Scholar 

  4. Babuška I, Miller A (1984) The post-processing approach in the finite element method—part 1: calculation of displacements, stresses and other higher derivatives of the displacements. Int J Numer Methods Eng 20:1085–1109

    Article  MATH  Google Scholar 

  5. Babuška I, Strouboulis T (2001) The finite element method and its reliability. Oxford University Press, Oxford

    Google Scholar 

  6. Babuška I, Whiteman J, Strouboulis T (2011) Finite elements: an introduction to the method and error estimation. Oxford University Press, Oxford

    Google Scholar 

  7. Chapelle D, Bathe KJ (2000) The mathematical shell model underlying general shell elements. Int J Numer Methods Eng 48:289–313

    Article  MathSciNet  MATH  Google Scholar 

  8. Demkowicz LF (2007) Computing with hp-Adaptive finite elements. One and two dimensional elliptic and Maxwell problems, vol 1. CRC Press, New York

    Google Scholar 

  9. Dvorkin EN, Bathe KJ (1984) A continuum mechanics based four-node shell element for general non-linear analysis. Eng Comput 1:77–88

    Article  Google Scholar 

  10. Girkmann K (1954) Flächentragwerke. Springer, Wien

    MATH  Google Scholar 

  11. Guide for Verification and Validation in Computational Solid Mechanics (2006) ASME V&V 10-2006. The American Society of Mechanical Engineers, New York

  12. MacNeal RH (1978) A simple quadrilateral shell element. Comput Struct 8:175–183

    Article  MATH  Google Scholar 

  13. Malinen M (2002) On the classical shell model underlying bilinear degenerated shell finite elements: general shell geometry. Int J Numer Methods Eng 55:629–652

    Article  MathSciNet  MATH  Google Scholar 

  14. Niemi AH (2008) Approximation of shell layers using bilinear elements on anisotropically refined rectangular meshes. Comput Methods Appl Mech Eng 197:3964–3975

    Article  MathSciNet  MATH  Google Scholar 

  15. Niemi AH (2010) A bilinear shell element based on a refined shallow shell model. Int J Numer Methods Eng 81:485–512

    MathSciNet  MATH  Google Scholar 

  16. Oberkampf WL, Roy CJ (2010) Verification and validation in scientific computing. Cambridge University Press, London

    MATH  Google Scholar 

  17. Pitkäranta J, Babuška I (2011) The dome and the ring: verification of classical back-of-the-envelope models for designing a stiffened shell roof. (to appear)

  18. Pitkäranta J, Babuška I, Szabó BA (2008) The Girkmann problem. IACM Expr 22:28

    Google Scholar 

  19. Pitkäranta J, Leino Y, Ovaskainen O, Piila J (1995) Shell deformation states and the finite element method: a benchmark study of cylindrical shells. Comput Methods Appl Mech Eng 128:81–121

    Article  MATH  Google Scholar 

  20. Pitkäranta J, Matache AM, Schwab C (2001) Fourier mode analysis of layers in shallow shell deformations. Comput Methods Appl Mech Eng 190:2943–2975

    Article  MATH  Google Scholar 

  21. Pitkäranta J, Szabó BA, Babuška I (2009) The problem of verification with reference to the Girkmann problem. IACM Expr 24:14–15

    Google Scholar 

  22. Roache PJ (2009) Fundamentals of verification and validation. Hermosa, New Mexico

    Google Scholar 

  23. Szabó BA, Babuška I, Pitkäranta J, Nervi S (2010) The problem of verification with reference to the Girkmann problem. Eng Comput 26:171–183

    Article  Google Scholar 

  24. Tews R, Rachowicz W (2009) Application of an automatic hp adaptive finite element method for thin-walled structures. Comput Methods Appl Mech Eng 198:1967–1984

    Article  MathSciNet  MATH  Google Scholar 

  25. Xue L, Demkowicz L (2002) Geometrical modeling package, version 2.0. Technical report 30, TICAM

  26. Zienkiewicz OC, Taylor RL, Too JM (1971) Reduced integration technique in general analysis of plates and shells. Int J Numer Methods Eng 3:275–290

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti H. Niemi.

Appendix: Summary of challenge problem results

Appendix: Summary of challenge problem results

We reproduce here from [23] the results received in response to the Girkmann challenge problem. The four results based on the p-version and the eleven results based on the h-version are shown in Tables 5 and 6, respectively.

Table 5 Summary of the challenge problem results with the p-version
Table 6 Summary of the challenge problem results with the h-version

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niemi, A.H., Babuška, I., Pitkäranta, J. et al. Finite element analysis of the Girkmann problem using the modern hp-version and the classical h-version. Engineering with Computers 28, 123–134 (2012). https://doi.org/10.1007/s00366-011-0223-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-011-0223-0

Keywords

Navigation