Skip to main content
Log in

3D conforming power diagrams for radial LGR in CPG reservoir grids

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Mesh generation becomes a crucial step in reservoir flow simulation of new generation. The mesh must faithfully represent the architecture of the reservoir and its heterogeneity. In (Flandrin et al. in IJNME 65(10):1639–1672, 2006) a three-dimensional hybrid mesh model was proposed to capture the radial characteristics of the flow around the wells. In this hybrid mesh, the reservoir is described by a non-uniform Cartesian structured mesh and the drainage areas around the wells are represented by structured radial circular meshes. Unstructured polyhedral meshes are used to connect these two kinds of structured grids. The construction of these transition meshes is based on 3D power diagrams (Aurenhammer in SIAM J Comput 16(1):78–96, 1987) to ensure finite volume properties such as mesh conformity, dual orthogonality and cell convexity. In this paper, we propose an extension of this hybrid model to the case where the reservoir is described by a corner point geometry (CPG) grid. At first, the CPG grid is mapped, in a reference space, into a non-uniform Cartesian grid by minimizing the mapping deformation. Then, a hybrid mesh is generated in this reference space using the previous method. Finally, this mesh is mapped back into the real space. Some quality criterions are introduced to measure and improve the quality of the polyhedral transition mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24 

Similar content being viewed by others

References

  1. Ponting DK (1989) Corner point geometry in reservoir simulation. ECMOR 1, Cambridge, pp 45–65

    Google Scholar 

  2. Heinemann ZE and Brand CW (1989) Gridding techniques in reservoir simulation. International Forum on Reservoir Simulation, Alpbach, pp 339–426

  3. Pedrosa OA, Aziz K (1985) Use of hybrid grid in reservoir simulation. In: SPE middle east oil technical conference, Bahrain, pp 99–112

  4. Borouchaki H, George PL, Lo SH (1996) Optimal delaunay point insertion. IJNME 39:3407–3437

    Article  MATH  MathSciNet  Google Scholar 

  5. George PL, Borouchaki H (1998) Delaunay triangulation and meshing. Hermes

  6. Flandrin N, Borouchaki H, Bennis C (2005) Diagrammes de puissance conformes pour l’ingénierie de réservoir. Mécanique Ind 6(3):369–379

    Article  Google Scholar 

  7. Bennis C, Sassi W, Faure JL, Chehade FH (1996). One more step in gocad stratigraphic grid generation: Taking into account faults and pinchouts. European 3-D reservoir modeling conference, SPE, Stavanger, N orway, pp 307–316

  8. Flandrin N, Borouchaki H, Bennis C (2006) 3D hybrid mesh generation for reservoir simulation. IJNME 65(10):1639–1672

    Article  MATH  MathSciNet  Google Scholar 

  9. Imai H, Iri M, Murota K (1985). Voronoï diagrams in the Laguerre geometry and its applications. SIAM J Comput 14(1):69–96

    Article  MathSciNet  Google Scholar 

  10. Balaven S, Bennis C, Boissonnat JD and Yvinec M (2002) Conforming orthogonal meshes. In: 11th IMR, Ithaca, New York, pp 219–227

  11. Balaven-Clermidy S (2001) Génération de maillages hybrides pour la simulation des réservoirs pétroliers. PhD Thesis, Ecole des mines de Paris

  12. Aurenhammer F (1991) Voronoï diagrams: a survey of a fundamental geometric data structure. ACM Comput Surv 23(3):345–405

    Article  Google Scholar 

  13. Fortune S (1997) Voronoï diagrams and Delaunay triangulations. In: Goodman JE, O’Rourke J (eds) Handbook of discrete and computational geometry, chap 20. CRC Press, LLC, Boca Raton, pp 377–388

  14. Boissonnat JD, Yvinec M (1998) Algorithmic geometry. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  15. Edelsbrunner H, Shah NR (1987) Incremental topological flipping works for regular triangulations. Algorithmica 15:223–241

    Article  MathSciNet  Google Scholar 

  16. Borouchaki H, Flandrin N, Bennis C (2005) Diagramme de Laguerre. In Comptes Rendus de l’Académie des Sciences. Série Mécanique 333(10):762–767

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bennis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennis, C., Borouchaki, H. & Flandrin, N. 3D conforming power diagrams for radial LGR in CPG reservoir grids. Engineering with Computers 24, 253–265 (2008). https://doi.org/10.1007/s00366-008-0098-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-008-0098-x

Keywords

Navigation