Skip to main content
Log in

An Extension of Laplace’s Method

  • Published:
Constructive Approximation Aims and scope

Abstract

Asymptotic expansions are obtained for contour integrals of the form

$$\begin{aligned} \int _a^b \exp \left( - zp(t) + z^{\nu /\mu } r(t) \right) q(t)\mathrm{d}t, \end{aligned}$$

in which z is a large real or complex parameter; p(t), q(t), and r(t) are analytic functions of t; and the positive constants \(\mu \) and \(\nu \) are related to the local behavior of the functions p(t) and r(t) near the endpoint a. Our main theorem includes as special cases several important asymptotic methods for integrals such as those of Laplace, Watson, Erdélyi, and Olver. Asymptotic expansions similar to ours were derived earlier by Dingle using formal, nonrigorous methods. The results of the paper also serve to place Dingle’s investigations on a rigorous mathematical foundation. The new results have potential applications in the asymptotic theory of special functions in transition regions, and we illustrate this by two examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Airey, J.R.: The Lommel–Weber $\Omega $ function and its application to the problem of electric waves on a thin anchor ring. Proc. R. Soc. Lond. Ser. A 94(661), 307–314 (1918)

    Article  Google Scholar 

  2. Dingle, R.B.: Asymptotic Expansions: Their Derivation and Interpretation. Academic Press, New York and London (1973)

    MATH  Google Scholar 

  3. Erdélyi, A.: Asymptotic Expansions. Dover, New York (1956)

    MATH  Google Scholar 

  4. Kaminski, D., Paris, R.B.: Asymptotics via iterated Mellin–Barnes integrals: application to the generalised Faxén integral. Methods Appl. Anal. 4(3), 311–325 (1997)

    MathSciNet  MATH  Google Scholar 

  5. de Laplace, P.S.: Théorie Analytique des Probabilités. Ve. Courcier, Paris (1812)

    MATH  Google Scholar 

  6. López, J.L., Pagola, P.J.: The confluent hypergeometric functions $M(a, b;z)$ and $U(a, b;z)$ for large $b$ and $z$. J. Comput. Appl. Math. 233(6), 1570–1576 (2010)

    Article  MathSciNet  Google Scholar 

  7. Markuševič, A.I.: Theory of Functions of a Complex Variable, Volume II. AMS Chelsea Publishing Company, New York, English edn. Translated and edited by R. A. Silverman (2005)

  8. Nemes, G.: An explicit formula for the coefficients in Laplace’s method. Constr. Approx. 38(3), 471–487 (2013)

    Article  MathSciNet  Google Scholar 

  9. Nemes, G.: The resurgence properties of the large order asymptotics of the Anger–Weber function I. J. Class. Anal. 4(1), 1–39 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Nemes, G.: The resurgence properties of the incomplete gamma function, I. Anal. Appl. 14(5), 631–677 (2016)

    Article  MathSciNet  Google Scholar 

  11. Olver, F.W.J.: Some new asymptotic expansions for Bessel functions of large orders. Proc. Camb. Philos. Soc. 48(3), 414–427 (1952)

    Article  MathSciNet  Google Scholar 

  12. Olver, F.W.J.: Why steepest descents? SIAM Rev. 12(2), 228–247 (1970)

    Article  MathSciNet  Google Scholar 

  13. Olver, F.W.J.: Asymptotics and Special Functions. Academic Press, New York (1974). (reprinted, A. K. Peters, Wellesley, MA, 1997)

    MATH  Google Scholar 

  14. Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W. Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V. (eds.): NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.17 of 2017-12-22

  15. Paris, R.B., Wood, A.D.: On the asymptotic expansions of solutions of an $n$th order linear differential equation with power coefficients. Proc. R. Ir. Acad. 85A(2), 201–220 (1985)

    MathSciNet  MATH  Google Scholar 

  16. Paris, R.B.: Hadamard Expansions and Hyperasymptotic Evaluation: An Extension of the Method of Steepest Descents. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  17. Paris, R.B.: Exponentially small expansions of the Wright function on the Stokes lines. Lith. Math. J. 54(1), 82–105 (2014)

    Article  MathSciNet  Google Scholar 

  18. Perron, O.: Über die näherungsweise Berechnung von Funktionen großer Zahlen, Sitzungsber. Bayr. Akad. Wissensch. (Münch. Ber.), pp. 191–219 (1917)

  19. Temme, N.M.: Uniform asymptotic expansions of confluent hypergeometric functions. J. Inst. Math. Appl. 22(2), 215–223 (1978)

    Article  MathSciNet  Google Scholar 

  20. Temme, N.M.: Asymptotic Methods for Integrals, Series in Analysis, vol. 6. World Scientific Publishing Co. Pte. Ltd., Hackensack (2015)

    MATH  Google Scholar 

  21. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1944)

    MATH  Google Scholar 

  22. Wong, R.: Asymptotic Approximations of Integrals. Academic Press, New York (1989). (reprinted, Classics Appl. Math. 34, SIAM, Philadelphia, 2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gergő Nemes.

Additional information

Communicated by Erik Koelink.

The author’s research was supported by a research Grant (GRANT11863412/70NANB15H221) from the National Institute of Standards and Technology.

Appendices

Appendix A. Basic Properties of Faxén’s Integral

In this appendix, we discuss some of the basic properties of the Faxén integral defined by Eq. (4). It is assumed throughout that \(0 \le \alpha < 1\) and \(\mathfrak {R}(\beta ) > 0\).

By uniform convergence, we may expand the factor \(\exp \left( xt^\alpha \right) \) in ascending powers of \(x t^\alpha \) and integrate (4) term by term. In this way we obtain the following expansion, valid for all x:

$$\begin{aligned} {\text {Fi}}(\alpha ,\beta ;x) = \sum \limits _{n = 0}^\infty \Gamma (\alpha n + \beta )\frac{x^n}{n!} . \end{aligned}$$

This expansion is useful for computing \({\text {Fi}}(\alpha ,\beta ;x)\) when x is small or moderate in size. For large values of |x|, asymptotic expansions should be used instead. Faxén’s integral is a particular case of the so-called Wright function since \({\text {Fi}}(\alpha ,\beta ;x) = {}_1\Psi _1 \left( {\alpha ,\beta ;0,1;x} \right) \). Accordingly, the large-x asymptotic behavior of \({\text {Fi}}(\alpha ,\beta ;x)\) can be determined by employing the well-established asymptotic theory of the Wright function [17]. In particular, to leading order,

$$\begin{aligned} {\text {Fi}}(\alpha ,\beta ;x) \sim \left( {\alpha x} \right) ^{(2\beta - 1)/(2 - 2\alpha )} \exp \left( {\left( {1 - \alpha } \right) \left( {\alpha ^\alpha x} \right) ^{1/(1 - \alpha )} } \right) \sqrt{\frac{{2\pi }}{{1 - \alpha }}} \end{aligned}$$

and

$$\begin{aligned} {\text {Fi}}(\alpha ,\beta ;-x) \sim \Gamma \left( {\frac{\beta }{\alpha }} \right) \frac{1}{{\alpha x^{\beta /\alpha } }} \end{aligned}$$

as \(x\rightarrow +\infty \). For further representations, we refer the reader to [4].

In the remaining part of this appendix, we show that for certain specific values of the parameters \(\alpha \) and \(\beta \), the function \({\text {Fi}}(\alpha ,\beta ;x)\) is expressible in terms of well-known special functions. These representations lead to simplified forms of the asymptotic expansions derived in Sect. 4. When \(\alpha =\frac{1}{2}\) and \(\beta \) is any complex number with positive real part, Faxén’s integral is essentially a parabolic cylinder function [14, §12.2]. Indeed, substituting \(t=\frac{1}{2} s^2\), we obtain

$$\begin{aligned} {\text {Fi}}\left( \frac{1}{2},\beta ;x \right)&= \int _0^{ + \infty } \exp \left( - t + xt^{1/2} \right) t^{\beta - 1} \mathrm{d}t \nonumber \\&= 2^{1 - \beta } \int _0^{ + \infty } \exp \left( - \frac{1}{2}s^2 + \frac{x}{2^{1/2}}s \right) s^{2\beta - 1} \mathrm{d}s \nonumber \\&= 2^{1 - \beta } \Gamma (2\beta )\exp \left( \frac{x^2}{8} \right) U\left( 2\beta - \frac{1}{2}, - 2^{ - 1/2} x \right) ; \end{aligned}$$
(54)

compare [14, eq. 12.5.1]. When \(\alpha =\beta = \frac{1}{3}\), the substitution \(t = \frac{1}{3}s^3\) produces

$$\begin{aligned} {\text {Fi}}\left( \frac{1}{3},\frac{1}{3};x \right)&= \int _0^{ + \infty } \exp \left( - t + xt^{1/3} \right) t^{ - 2/3} \mathrm{d}t \nonumber \\&= 3^{2/3} \int _0^{ + \infty } \exp \left( - \frac{1}{3}s^3 + \frac{x}{3^{1/3}}s \right) \mathrm{d}s = 3^{2/3} \pi {\text {Hi}}( 3^{ - 1/3} x ) \end{aligned}$$
(55)

(cf. [14, eq. 9.12.20]), where \({\text {Hi}}(x)\) is Scorer’s function [14, §9.12]. The function \({\text {Hi}}(x)\) is known to satisfy the inhomogeneous Airy equation

$$\begin{aligned} {\text {Hi}}''(x) - x{\text {Hi}}(x) = \frac{1}{\pi }. \end{aligned}$$
(56)

For other special cases, see [13, p. 332].

Appendix B

In this appendix, we prove the estimate (23). With the notation of Sect. 2, we define

$$\begin{aligned} F(w,y) := v^{1 - \lambda /\mu } f(v,y/v) \end{aligned}$$

for sufficiently small |w| and \(\left| \arg y\right| <\frac{\pi }{2}\). Thus, by (20), F(wy) is an analytic function of w, and it has the power series expansion

$$\begin{aligned} F(w,y) = \sum \limits _{n = 0}^{\infty } \left( \sum \limits _{m = 0}^n f_{n,m} y^{m\nu /\mu } \right) w^n, \end{aligned}$$

valid within some circle \(\left| w\right| \le \rho \), where \(\rho \) is independent of y. The branch of \(y^{\nu /\mu }\) has phase \(\nu \arg y/\mu \). We truncate this power series after \(N\ge 0\) terms and write

$$\begin{aligned} F(w,y) = \sum \limits _{n = 0}^{N - 1} \left( \sum \limits _{m = 0}^n f_{n,m} y^{m\nu /\mu } \right) w^n + w^N F_N (w,y), \end{aligned}$$

with the remainder

$$\begin{aligned} F_N (w,y) = f_N (v,y/v) \end{aligned}$$
(57)

(compare (22)). By choosing k sufficiently close to a, we can assume that \(\left| p(k)-p(a)\right| ^{1/\mu }<\rho \). Then

$$\begin{aligned} \left| F_N (w,y) \right| \le \frac{\rho ^{ - N} }{2\pi }\frac{M(\rho )}{\rho - \left| w \right| },\qquad M(\rho ) = \mathop {\max }\limits _{\left| \zeta \right| = \rho } \left| F(\zeta ,y) \right| , \end{aligned}$$
(58)

for any w satisfying \(w \le \left| p(k)-p(a)\right| ^{1/\mu }\) (see, for example, [7, p. 70]). It is readily seen from (13) that

$$\begin{aligned} F(\zeta ,y) = \mathcal {O}(1)\exp \left( C_k y^{\nu /\mu } \right) ,\quad \left| \zeta \right| =\rho , \end{aligned}$$
(59)

where the implied constant depends only on k and \(\rho \), and \(C_k\) is an assignable constant that may depend on k. Hence, from (10), (57), (58), and (59), we can infer that

$$\begin{aligned} f_N (v,z) = \mathcal {O}(1)\exp \left( C_k (zv)^{\nu /\mu } \right) , \end{aligned}$$

uniformly with respect to z and v, if v lies on the segment connecting 0 to \(\kappa \).

Appendix C

In this appendix, we show that if \(0\le \alpha <1\), and \(\beta \) and x are arbitrary (fixed) complex numbers, then

$$\begin{aligned} \int _\zeta ^\infty \exp \left( - t + xt^\alpha \right) t^{\beta - 1} \mathrm{d}t = \mathcal {O}(1)\exp \left( - \zeta + x\zeta ^\alpha \right) \zeta ^{\beta - 1} \end{aligned}$$
(60)

uniformly in the region \(\left| \arg \zeta \right| \le \frac{\pi }{2}\) as \(\left| \zeta \right| \rightarrow +\infty \). To this end, we perform a change of integration variable from t to u by \(t = \zeta (u + 1)\) in (60), and deform the contour of integration so that \(\arg u = -\arg \zeta \) along the new contour. Thus, the left-hand side of (60) becomes

$$\begin{aligned}&\zeta ^\beta \int _0^{\infty e^{ - i\arg \zeta } } \exp \left( - \zeta \left( u + 1\right) + x\left( \zeta \left( u + 1 \right) \right) ^\alpha \right) \left( u + 1 \right) ^{\beta - 1} \mathrm{d}u \nonumber \\&\quad = \exp \left( - \zeta + x\zeta ^\alpha \right) \zeta ^\beta \int _0^{\infty e^{ - i\arg \zeta } } \exp \left( - \zeta u + x\zeta ^\alpha \left( \left( u + 1 \right) ^\alpha - 1\right) \right) \left( u + 1 \right) ^{\beta - 1} \mathrm{d}u \end{aligned}$$
(61)

for any \(\zeta \) in the closed sector \(\left| \arg \zeta \right| \le \frac{\pi }{2}\). Since \(0\le \alpha <1\), we may assert that

$$\begin{aligned} \mathfrak {R}\left( - \zeta u + x\zeta ^\alpha \left( \left( u + 1 \right) ^\alpha - 1 \right) \right) = - \left| \zeta \right| \left| u \right| \mathfrak {R}\left( 1 - \frac{x}{\zeta ^{1 - \alpha } }\frac{\left( u + 1 \right) ^\alpha - 1}{u} \right) \le - \frac{1}{2}\left| \zeta \right| \left| u \right| \end{aligned}$$

for sufficiently large \(\left| \zeta \right| \). Therefore, for large \(\left| \zeta \right| \), the integral in the second line of (61) can be estimated as follows:

$$\begin{aligned}&\left| \int _0^{\infty e^{ - i\arg \zeta } } \exp \left( - \zeta u + x\zeta ^\alpha \left( \left( u + 1 \right) ^\alpha - 1 \right) \right) \left( u + 1 \right) ^{\beta - 1} \mathrm{d}u \right| \\&\quad \le \int _0^{\infty e^{ - i\arg \zeta } } e^{ - \frac{1}{2}\left| \zeta \right| \left| u \right| } \left| \left( u + 1 \right) ^{\beta - 1} \right| \left| \mathrm{d}u \right| = \int _0^{ + \infty } e^{ - \frac{1}{2}\left| \zeta \right| s} \left| \left( se^{ - i\arg \zeta } + 1 \right) ^{\beta - 1} \right| \mathrm{d}s, \end{aligned}$$

with \(s=\left| u \right| \). Since the factor \(\left( se^{ - i\arg \zeta } + 1 \right) ^{\beta - 1}\) grows sub-exponentially in s, the last quantity is \(\mathcal {O}(\left| \zeta \right| ^{-1})\), which completes the proof of the estimate (60).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemes, G. An Extension of Laplace’s Method. Constr Approx 51, 247–272 (2020). https://doi.org/10.1007/s00365-018-9445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-018-9445-3

Keywords

Mathematics Subject Classification

Navigation