Skip to main content
Log in

Parametric Representation of Univalent Functions with Boundary Regular Fixed Points

  • Published:
Constructive Approximation Aims and scope

Abstract

A classical result in the theory of Loewner’s parametric representation states that the semigroup \({{\mathfrak {U}}}_0\) of all conformal self-maps \(\varphi \) of the unit disk \({\mathbb {D}}\) normalized by \(\varphi (0) = 0\) and \(\varphi '(0) > 0\) can be obtained as the reachable set of the Loewner–Kufarev control system

$$\begin{aligned} \frac{\mathrm {d}w_t}{\mathrm {d}t}=G_t\circ w_t,\quad t\geqslant 0,\qquad w_0=\mathsf{id}_{\mathbb {D}}, \end{aligned}$$

where the control functions \(t\mapsto G_t\in \mathsf{Hol}({\mathbb {D}},{\mathbb {C}})\) form a convex cone. We extend this result to semigroups \({{\mathfrak {U}}}[F]\) formed by all conformal self-maps of \({\mathbb {D}}\) with the prescribed finite set F of boundary regular fixed points and to their counterparts \({{\mathfrak {U}}}_{\tau }[F]\) for the case of self-maps having the Denjoy–Wolff point at \(\tau \in {\overline{{\mathbb {D}}}}{\setminus } F\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Loewner [33] himself obtained the parametric representation of a dense subclass of \(\mathcal {S}\). Later it was extended to the whole class by Pommerenke [38, 39] and independently by Gutljanskiĭ [30].

  2. Observe that our notation \(\Lambda \) coincides with the spectral function in [12] taken with the opposite sign.

  3. Of course, in the general case, some additional condition of topological nature would also be required.

References

  1. Abate, M.: Iteration theory of holomorphic maps on taut manifolds. Research and Lecture Notes in Mathematics. Complex Analysis and Geometry, Mediterranean, Rende (1989)

    MATH  Google Scholar 

  2. Abate, M., Bracci, F.: Common boundary regular fixed points for holomorphic semigroups in strongly convex domains. Contemp. Math. 667, 1–14 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aleksandrov, I.A.: Parametric continuations in the theory of univalent functions (Russian), Izdat. “Nauka”, Moscow (1976). MR0480952 (58 #1099)

  4. Aleksandrov, I.A., Aleksandrov, S.T., Sobolev, V.V.: Extremal properties of mappings of a half plane into itself. In: Complex Analysis Warsaw pp. 7–32. PWN, Warsaw (1979)

  5. Aleksandrov, S.T.: Parametric representation of functions univalent in the half plane. In: Extremal Problems of the Theory of Functions, pp. 3–10. Tomsk. Gos. Univ, Tomsk (1979)

  6. Anderson, J.M., Vasil’ev, A.: Lower Schwarz-Pick estimates and angular derivatives. Ann. Acad. Sci. Fenn. Math. 33(1), 101–110 (2008)

    MATH  MathSciNet  Google Scholar 

  7. Berkson, E., Porta, H.: Semigroups of holomorphic functions and composition operators. Michigan Math. J. 25, 101–115 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bhatia, R.: Matrix Analysis, Graduate Texts in Mathematics, vol. 169. Springer, New York (1997)

    Google Scholar 

  9. Bauer, R.O.: Chordal Loewner families and univalent Cauchy transforms. J. Math. Anal. Appl. 302, 484–501 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bracci, F., Contreras, M.D., Díaz-Madrigal, S.: Aleksandrov-Clark measures and semigroups of analytic functions in the unit disc. Ann. Acad. Sci. Fenn. Math. 33(1), 231–240 (2008)

    MATH  MathSciNet  Google Scholar 

  11. Bracci, F., Contreras, M., Díaz-Madrigal, S.: Evolution families and the Loewner Equation I: the unit disc. J. Reine Angew. Math. (Crelle’s Journal) 672, 1–37 (2012)

  12. Bracci, F., Contreras, M.D., Díaz-Madrigal, S., Gumenyuk, P.: Boundary regular fixed points in Loewner theory. Ann. Mat. Pura Appl. (4) 194(1), 221–245 (2015)

  13. Bracci, F., Gumenyuk, P.: Contact points and fractional singularities for semigroups of holomorphic self-maps in the unit disc. J. Anal. Math. 130(1), 185–217 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  14. de Branges, L.: A proof of the Bieberbach conjecture. Acta Math. 154(1–2), 137–152 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chon, I.: Infinitesimally generated stochastic totally positive matrices. Commun. Korean Math. Soc. 12(2), 269–273 (1997)

    MATH  MathSciNet  Google Scholar 

  16. Contreras, M.D., Díaz-Madrigal, S., Gumenyuk, P.: Loewner chains in the unit disk. Rev. Mat. Iberoam. 26, 975–1012 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Contreras, M.D., Díaz-Madrigal, S., Pommerenke, C.: Fixed points and boundary behaviour of the Koenigs function. Ann. Acad. Sci. Fenn. Math. 29(2), 471–488 (2004)

    MATH  MathSciNet  Google Scholar 

  18. Contreras, M.D., Díaz-Madrigal, S., Pommerenke, Ch.: On boundary critical points for semigroups of analytic functions. Math. Scand. 98(1), 125–142 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cowen, C.C., Pommerenke, C.: Inequalities for the angular derivative of an analytic function in the unit disk. J. Lond. Math. Soc. (2) 26(2), 271–289 (1982)

  20. Elin, M., Shoikhet, D., Tarkhanov, N.: Separation of boundary singularities for holomorphic generators. Ann. Mat. Pura Appl. (4) 190(4), 595–618 (2011)

  21. Frolova, A., Levenshtein, M., Shoikhet, D., Vasil’ev, A.: Boundary distortion estimates for holomorphic maps. Complex Anal. Oper. Theory 8(5), 1129–1149 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  22. Goryaĭnov, V.V.: Fractional iterates of functions that are analytic in the unit disk with given fixed points Mat. Sb. 182(9), 1281–1299 (1991); translation in Math. USSR-Sb. 74(1), 29–46 (1993)

  23. Goryainov, V.V.: Semigroups of conformal mappings, Mat. Sb. (N.S.) 129(171)(4), 451–472 (1986) (Russian); translation in Math. USSR. Sbornik 57, 463–483 (1987)

    Article  Google Scholar 

  24. Goryainov, V.V.: Evolution families of analytic functions and time-inhomogeneous Markov branching processes. Dokl. Akad. Nauk 347(6), 729–731 (1996); translation. Dokl. Math. 53(2), 256–258 (1996)

    Google Scholar 

  25. Goryainov, V.V.: Evolution families of conformal mappings with fixed points. (Russian. English summary). Zírnik Prats’ Instytutu Matematyky NAN Ukrayiny. National Academy of Sciences of Ukraine (ISSN 1815-2910) 10 (2013), No. 4–5, 424–431. Zbl 1289.30024

  26. Goryainov, V.V.: Semigroups of analytic functions in analysis and applications, Uspekhi Mat. Nauk 67(6 (408)), 5–52 (2012); translation in Russian Math. Surveys 67(6), 975–1021 (2012)

  27. Goryainov, V.V.: Evolution families of conformal mappings with fixed points and the Löwner-Kufarev equation. Mat. Sb. 206(1), 39–68 (2015); translation. Sb. Math. 206(1–2), 33–60 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  28. Goryainov, V.V., Ba, I.: Semigroups of conformal mappings of the upper half-plane into itself with hydrodynamic normalization at infinity. Ukrainian Math. J. 44, 1209–1217 (1992)

    Article  MathSciNet  Google Scholar 

  29. Goryainov, V.V., Kudryavtseva, O.S.: One-parameter semigroups of analytic functions, fixed points and the Koenigs function. Mat. Sb. 202(7), 43–74 (2011) (Russian); translation in Sbornik: Mathematics 202(7–8), 971–1000 (2011)

  30. Gutljanskiĭ, V. Ja.: Parametric representation of univalent functions (in Russian), Dokl. Akad. Nauk SSSR 194, 750–753 (1970). MR0271324 (42 #6207); English translation in Soviet Math. Dokl. 11, 1273–1276 (1970)

  31. Hofmann, K.H., Lawson, J.D.: Local semigroups in Lie groups and locally reachable sets. Rocky Mt. J. Math. 20(3), 717–735 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kufarev, P.P.: On one-parameter families of analytic functions (in Russian. English summary). Rec. Math. [Mat. Sbornik] N.S. 13(55), 87–118 (1943)

  33. Löwner, K.: Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. Math. Ann. 89, 103–121 (1923)

    Article  MATH  MathSciNet  Google Scholar 

  34. Loewner, C.: On totally positive matrices. Math. Z. 63, 338–340 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  35. Loewner, C.: Seminars on analytic functions, Institute for Advanced Study, Princeton, New Jersey, vol. 1 (1957). http://babel.hathitrust.org

  36. Loewner, C.: On generation of monotonic transformations of higher order by infinitesimal transformations. J. Anal. Math. 11, 189–206 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  37. Poggi-Corradini, P.: Canonical conjugations at fixed points other than the Denjoy-Wolff point. Ann. Acad. Sci. Fenn. Math. 25(2), 487–499 (2000)

    MATH  MathSciNet  Google Scholar 

  38. Pommerenke, Ch.: Über dis subordination analytischer funktionen. J. Reine Angew Math. 218, 159–173 (1965)

    MATH  MathSciNet  Google Scholar 

  39. Pommerenke, Ch.: Univalent Functions. With a Chapter on Quadratic Differentials by Gerd Jensen. Vandenhoeck & Ruprecht, Göttingen (1975)

  40. Pommerenke, Ch.: Boundary Behaviour of Conformal Mappings. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  41. Pommerenke, C., Vasil’ev, A.: Angular derivatives of bounded univalent functions and extremal partitions of the unit disk. Pac. J. Math. 206(2), 425–450 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  42. Renggli, H.: An inequality for logarithmic capacities. Pac. J. Math. 11, 313–314 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  43. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118, 221–288 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  44. Unkelbach, H.: Über die Randverzerrung bei konformer Abbildung. Math. Z. 43, 739–742 (1938). Zbl: 0018.22403

  45. Unkelbach, H.: Über die Randverzerrung bei schlichter konformer Abbildung. Math. Z. 46, 329–336 (1940)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

Much inspiration for the work under the present paper has been drawn from the scientific publications of and from the personal communication with Prof. Viktor V. Goryainov. The author is also grateful to Prof. Oliver Roth for pointing out reference [42] essentially used in the proof. The text of the paper has been considerably improved thanks to valuable suggestions of the anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Gumenyuk.

Additional information

Communicated by Stephan Ruscheweyh.

Partially supported by the FIRB grant Futuro in Ricerca “Geometria Differenziale Complessa e Dinamica Olomorfa” n. RBFR08B2HY and by Ministerio de Economía y Competitividad (Spain) project MTM2015-63699-P.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gumenyuk, P. Parametric Representation of Univalent Functions with Boundary Regular Fixed Points. Constr Approx 46, 435–458 (2017). https://doi.org/10.1007/s00365-017-9376-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-017-9376-4

Keywords

Mathematics Subject Classification

Navigation