Skip to main content
Log in

Sufficient Conditions for Sampling and Interpolation on the Sphere

  • Published:
Constructive Approximation Aims and scope

Abstract

We obtain sufficient conditions for arrays of points, \(\mathcal {Z}=\{\mathcal {Z}(L) \}_{L\ge 1}\), on the unit sphere \(\mathcal {Z}(L)\subset \mathbb {S}^d\), to be Marcinkiewicz–Zygmund and interpolating arrays for spaces of spherical harmonics. The conditions are in terms of the mesh norm and the separation radius of \(\mathcal {Z}(L)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Betz, C., Cámera, G.A., Gzyl, H.: Bounds for the first eigenvalue of a spherical cap. Appl. Math. Optim. 10(3), 193–202 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beurling, A.: Complex analysis. In: Carleson, L., Malliavin, P., Neuberger, J., Wermer, J. (eds.) The Collected Works Arne Beurling, vol. 2, Contemporary Mathematicians. Birkhäuser Boston Inc., Boston, MA (1989)

    Google Scholar 

  3. Bonami, A., Clerc, J.-L.: Sommes de Cesaro et multiplicateurs des developpements en harmoniques spheriques. Trans. Am. Math. Soc. 183, 223–263 (1973)

    MATH  MathSciNet  Google Scholar 

  4. Chui, C.K., Zhong, L.: Polynomial interpolation and Marcinkiewicz–Zygmund inequalities on the unit circle. J. Math. Anal. Appl. 233(1), 387–405 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dai, F., Xu, Y.: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer Monographs in Mathematics. Springer, New York (2013)

    Book  Google Scholar 

  6. Damelin, S.B., Maymeskul, V.: On point energies, separation radius and mesh norm for s-extremal configurations on compact sets in \(\mathbb{R}^n\). J. Complex. 21(6), 845–863 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Duren, P., Schuster, A.: Bergman Spaces. Mathematical Surveys and Monographs, 100. American Mathematical Society, Providence, RI (2004)

  8. Filbir, F., Mhaskar, H.N.: Marcinkiewicz–Zygmund measures on manifolds. J. Complex. 27(6), 568–596 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Filbir, F., Mhaskar, H.N.: A quadrature formula for diffusion polynomials corresponding to a generalized heat kernel. J. Fourier Anal. Appl. 16(5), 629–657 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Filbir, F., Themistoclakis, W.: Polynomial approximation on the sphere using scattered data. Math. Nachr. 281(5), 650–668 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Friedland, S., Hayman, W.K.: Eigenvalue inequalities for the Dirichlet problem on spheres and the growth of subharmonic functions. Comment. Math. Helv. 51(2), 133–161 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ingham, A.E.: Some trigonometrical inequalities with applications in the theory of series. Math. Z. 41(1), 367–379 (1936)

    Article  MathSciNet  Google Scholar 

  13. Komornik, V., Loreti, P.: Fourier Series in Control Theory. Springer Monographs in Mathematics. Springer, New York (2005)

    Google Scholar 

  14. Kuijlaars, A.B.J., Saff, E.B.: Asymptotics for minimal discrete energy on the sphere. Trans. Am. Math. Soc. 350(2), 523–538 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Levin, B.Y.: Lectures on Entire Functions. Translations of Mathematical Monographs, 150. American Mathematical Society, Providence, RI (1996)

  16. Lubinsky, D.S.: Marcinkiewicz–Zygmund inequalities: methods and results. In: Milovanovic, G.V. (ed.) Recent Progress in Inequalities, Mathematics and Its Applications, vol. 430, pp. 213–240. Kluwer Academic Publishers, Dordrecht (1998)

  17. Marcinkiewicz, J., Zygmund, A.: Mean values of trigonometrical polynomials. Fund. Math. 28, 131–166 (1937)

    MATH  Google Scholar 

  18. Marzo, J.: Marcinkiewicz–Zygmund inequalities and interpolation by spherical harmonics. J. Funct. Anal. 250(2), 559–587 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mhaskar, H.N., Narcowich, F.J., Ward, J.D.: Spherical Marcinkiewicz–Zygmund Inequalities and Positive Quadrature, Mathematics of Computation, vol. 70, pp. 1113–1130 (2000). (Corrigendum: Mathematics of Computation, vol. 71, pp. 453–454 (2001))

  20. Mhaskar, H.N.: Weighted quadrature formulas and approximation by zonal function networks on the sphere. J. Complex. 22(3), 348–370 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mhaskar, H.N., Narcowich, F.J., Sivakumar, N., Ward, J.D.: Approximation with interpolatory constraints. Proc. Am. Math. Soc. 130(5), 1355–1364 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Müller, C.: Analysis of Spherical Symmetries in Euclidean Spaces, Applied Mathematical Sciences, vol. 129. Springer, New York (1998)

    Book  Google Scholar 

  23. Nikol’skiĭ, S.M.: Approximation of Functions of Several Variables and Imbedding Theorems, Springer, Die Grundlehren der mathematische Wissenschaften in Einzeldarstellungen, 205 (1975)

  24. Olevskii, A., Ulanovskii, A.: On Ingham-type interpolation in \(\mathbb{R}^n\). C. R. Math. Acad. Sci. Paris 348(13–14), 807–810 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ortega-Cerdà, J., Pridhnani, B.: Carleson measures and Logvinenko–Sereda sets on compact manifolds. Forum Math. 25(1), 151–172 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ortega-Cerdà, J., Pridhnani, B.: Beurling–Landau’s density on compact manifolds. J. Funct. Anal. 263, 2102–2140 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ortega-Cerdà, J., Saludes, J.: Marcinkiewicz–Zygmund inequalities. J. Approx. Theory 145(2), 237–252 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Pinsky, M.A.: The first eigenvalue of a spherical cap. Appl. Math. Optim. 7(2), 137–139 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  29. Reimer, M.: Constructive Theory of Multivariate Functions. BI Wissenschaftsverlag, Mannheim (1990)

    MATH  Google Scholar 

  30. Seip, K.: Interpolation and Sampling in Spaces of Analytic Functions. University Lecture Series, 33. American Mathematical Society, Providence, RI (2004)

    Google Scholar 

  31. Sloan, I.H., Womersley, R.S.: Extremal systems of points and numerical integration on the sphere. Adv. Comput. Math. 21(1–2), 107–125 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Szegö, G.: Orthogonal Polynomials, vol. 23. American Mathematical Society, Colloquium Publications, Providence, RI (1939)

    Google Scholar 

  33. Zygmund, A.: Trigonometric Series: Vols. I, II. Cambridge University Press, Cambridge (1977)

    Google Scholar 

Download references

Acknowledgments

The authors thank Joaquim Ortega-Cerdà for helpful conversations on the subject matter of this paper. We would also like to express our gratitude to the referee for all his/her comments and suggestions. Supported by Grants MTM2008-05561-C02-01 and 2009 SGR 1303.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Marzo.

Additional information

Communicated by Edward B. Saff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzo, J., Pridhnani, B. Sufficient Conditions for Sampling and Interpolation on the Sphere. Constr Approx 40, 241–257 (2014). https://doi.org/10.1007/s00365-014-9252-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-014-9252-4

Keywords

Mathematics Subject Classification

Navigation