Skip to main content
Log in

Frames Adapted to a Phase-Space Cover

  • Published:
Constructive Approximation Aims and scope

Abstract

We construct frames adapted to a given cover of the time–frequency or time-scale plane. The main feature is that we allow for quite general and possibly irregular covers. The frame members are obtained by maximizing their concentration in the respective regions of phase-space. We present applications in time–frequency, wavelet, and Gabor analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For two nonnegative functions \(f,g: X \rightarrow (0,+\infty )\), the statement \(f \approx g\) means that there exist constants \(c,C \in (0,+\infty )\) such that \(cf(x) \le g(x) \le Cf(x)\) for all \(x \in X\).

  2. The function \(\varTheta \) is called \(H\) in the proof [47, Theorem 1].

References

  1. Abreu, L.D.: Sampling and interpolation in Bargmann–Fock spaces of polyanalytic functions. Appl. Comput. Harmon. Anal. 29(3), 287–302 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abreu, L.D.: On the structure of Gabor and super Gabor spaces. Monatsh. Math. 161(3), 237–253 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Abreu, L.D., Gröchenig, K.: Banach Gabor frames with Hermite functions: polyanalytic spaces from the Heisenberg group. Appl. Anal. 91, 1981–1997 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aldroubi, A., Cabrelli, C., Molter, U.: Wavelets on irregular grids with arbitrary dilation matrices, and frame atoms for \(L^2(R^d)\). Appl. Comput. Harmon. Anal. Special Issue on Frames II,119–140 (2004)

  5. Balk, M.: Polyanalytic functions and their generalizations. Complex analysis I. Encycl. Math. Sci. 85, 195–253 (1997); translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Math., Fundam Napravleniya 85, 187–246 (1991)

  6. Boggiatto, P.: Localization operators with \({L}^p\) symbols on modulation spaces. In Advances in Pseudo-differential Operators, Volume 155 of Operator Theory: Advances and Applications, pp. 149–163. Birkhäuser, Basel (2004)

  7. Boggiatto, P., Cordero, E.: Anti-Wick quantization with symbols in \(L^p\) spaces. Proc. Am. Math. Soc. 130(9), 2679–2685 (2002). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  8. Boggiatto, P., Toft, J.: Schatten classes for Toeplitz operators with Hilbert space windows on modulation spaces. Adv. Math. 217(1), 305–333 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bownik, M., Ho, K.P.: Atomic and molecular decompositions of anisotropic Triebel–Lizorkin spaces. Trans. Am. Math. Soc. 358(4), 1469–1510 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cabrelli, C., Molter, U., Romero, J.L.: Non-uniform painless decompositions for anisotropic Besov and Triebel–Lizorkin spaces. Adv. Math. 232(1), 98–120 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Casazza, P. G., Kutyniok, G.: Frames of subspaces. In: Wavelets, Frames and Operator Theory, Volume 345 of Contemporary Mathematics, pp. 87–113. American Mathematical Society, Providence (2004)

  12. Cordero, E., Gröchenig, K.: Time–frequency analysis of localization operators. J. Funct. Anal. 205(1), 107–131 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cordero, E., Gröchenig, K.: Symbolic calculus and Fredholm property for localization operators. J. Fourier Anal. Appl. 12(4), 371–392 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dahlke, S., Steidl, G., Teschke, G.: Weighted coorbit spaces and Banach frames on homogeneous spaces. J. Fourier Anal. Appl. 10(5), 507–539 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dahmen, W., Dekel, S., Petrushev, P.: Two-level-split decomposition of anisotropic Besov spaces. Constr. Approx. 31(2), 149–194 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Daubechies, I.: Time–frequency localization operators: a geometric phase space approach. IEEE Trans. Inform. Theory 34(4), 605–612 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Daubechies, I.: The wavelet transform, time–frequency localization and signal analysis. IEEE Trans. Inform. Theory 36(5), 961–1005 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Daubechies, I., Paul, T.: Time–frequency localisation operators—a geometric phase space approach: II. The use of dilations. Inverse Probl. 4(3), 661–680 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dörfler, M., Feichtinger, H.G., Gröchenig, K.: Time–frequency partitions for the Gelfand triple \(({S}_0, {L}^2,{{S}_0}^{\prime })\). Math. Scand. 98(1), 81–96 (2006)

    MATH  MathSciNet  Google Scholar 

  20. Dörfler, M., Gröchenig, K.: Time–frequency partitions and characterizations of modulations spaces with localization operators. J. Funct. Anal. 260(7), 1903–1924 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dörfler, M., Torrésani, B.: Representation of operators in the time–frequency domain and generalized Gabor multipliers. J. Fourier Anal. Appl. 16(2), 261–293 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Feichtinger, H.G.: Banach convolution algebras of Wiener type. In: Nagy, B.Sz., Szabados, J. (eds.) Proceedings of the Conference on Functions, Series, Operators, Budapest 1980, Volume 35 of Colloquium Mathematical Society Janos Bolyai, pp. 509–524. North-Holland, Amsterdam (1983)

  23. Feichtinger, H.G.: Generalized amalgams, with applications to Fourier transform. Canad. J. Math. 42(3), 395–409 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  24. Feichtinger, H.G., Gröbner, P.: Banach spaces of distributions defined by decomposition methods. I. Math. Nachr. 123, 97–120 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  25. Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decompositions. I. J. Funct. Anal. 86(2), 307–340 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  26. Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decompositions. II. Monatsh. Math. 108(2–3), 129–148 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  27. Feichtinger, H.G., Nowak, K.: A first survey of Gabor multipliers. In: Feichtinger, H.G., Strohmer, T. (eds.) Advances in Gabor Analysis. Applied and Numerical Harmonic Analysis, pp. 99–128. Birkhäuser, Basel (2003)

  28. Feichtinger, H.G., Zimmermann, G.: A Banach space of test functions for Gabor analysis. In: Feichtinger, H.G., Strohmer, T. (eds.) Gabor Analysis and Algorithms: Theory and Applications. Applied and Numerical Harmonic Analysis, pp. 123–170. Birkhäuser, Boston (1998)

    Chapter  Google Scholar 

  29. Fornasier, M., Gröchenig, K.: Intrinsic localization of frames. Constr. Approx. 22(3), 395–415 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Fournier, J.J.F., Stewart, J.: Amalgams of \({L}^p\) and \(\ell ^q\). Bull. Am. Math. Soc. New Ser. 13, 1–21 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  31. Gelfand, I.M., Shilov, G.E., Raikov, D.A.: Commutative Normed Rings. Chelsea Publishing Company, Bronx (1964)

    Google Scholar 

  32. Gröchenig, K.: Irregular sampling of wavelet and short-time Fourier transforms. Constr. Approx. 9, 283–297 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  33. Gröchenig, K.: Foundations of Time–Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2001)

  34. Gröchenig, K.: Composition and spectral invariance of pseudodifferential operators on modulation spaces. J. Anal. Math. 98, 65–82 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Gröchenig, K.: Time–frequency analysis of Sjörstrand’s class. Rev. Mat. Iberoam. 22(2), 703–724 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Gröchenig, K.: Representation and approximation of pseudodifferential operators by sums of Gabor multipliers. Appl. Anal. 90(3–4), 385–401 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  37. Gröchenig, K., Piotrowski, M.: Molecules in coorbit spaces and boundedness of operators. Studia Math. 192(1), 61–77 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. Holland, F.: Harmonic analysis on amalgams of \({L}^p\) and \(\ell ^q\). J. Lond. Math. Soc. 10, 295–305 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  39. Jaillet, F., Torrésani, B.: Time–frequency jigsaw puzzle: adaptive multiwindow and multilayered Gabor expansions. Int. J. Wavelets Multiresolut. Inf. Process. 2, 293–316 (2007)

    Article  Google Scholar 

  40. Liu, Y., Mohammed, A., Wong, M.: Wavelet multipliers on \({L}^p(\mathbb{R}^n)\). Proc. Am. Math. Soc. 136(3), 1009–1018 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  41. Liuni, M., Röbel, A., Romito, M., Rodet, X.: Rényi information measures for spectral change detection. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, pp. 3824–3827 (2011)

  42. Nashed, M., Sun, Q.: Sampling and reconstruction of signals in a reproducing kernel subspace of \({L}^p({R}^d)\). J. Funct. Anal. 258(7), 2422–2452 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  43. Oswald, P.: Stable subspace splittings for Sobolev spaces and domain decomposition algorithms. In: Keyes, D.E., et al. (eds.) Domain Decomposition Methods in Scientific and Engineering Computing Proceedings of the 7th International Conference on Domain Decomposition, October 27–30, 1993, Pennsylvania State University, PA, USA. Ameri, Providence (1994)

  44. Rauhut, H.: Wiener amalgam spaces with respect to quasi-Banach spaces. Colloq. Math. 109(2), 345–362 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  45. Riesz, F., Sz.-Nagy, B.: Functional Analysis. Frederick Ungar Publishing Co., New York (1955)

    Google Scholar 

  46. Romero, J.L.: Surgery of spline-type and molecular frames. J. Fourier Anal. Appl. 17, 135–174 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  47. Romero, J.L.: Characterization of coorbit spaces with phase-space covers. J. Funct. Anal. 262(1), 59–93 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  48. Schörkhuber, C., Klapuri, A.: Constant-Q toolbox for music processing. In: Proceedings of the 7th Sound and Music Computing Conference (SMC), 2010 (2010)

  49. Simon, B.: Trace Ideals and Their Applications. Cambridge University Press, Cambridge (1979)

    MATH  Google Scholar 

  50. Sjöstrand, J.: An algebra of pseudodifferential operators. Math. Res. Lett. 1(2), 185–192 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  51. Sjöstrand, J.: Wiener type algebras of pseudodifferential operators. Séminaire sur les équations aux Dérivées Partielles, 1994–1995. École Polytech, Palaiseau, Exp. No. IV, 21 (1995)

  52. Velasco, G.A., Holighaus, N., Dörfler, M., Grill, T.: Constructing an invertible constant-Q transform with non-stationary Gabor frames. In: Proceedings of DAFX11, Paris (2011)

  53. Wong, M.: Localization Operators. Seoul National University, Seoul (1999)

    MATH  Google Scholar 

  54. Wong, M.-W.: Wavelet Transforms and Localization Operators. Operator Theory: Advances and Applications, vol. 136. Birkhäuser, Basel (2002)

Download references

Acknowledgments

Monika Dörfler was supported by the Austrian Science Fund (FWF): [T384-N13] Locatif and by the WWTF projects Audiominer (MA09-24) and (VRG12-009). José Luis Romero gratefully acknowledges support from the Austrian Science Fund (FWF): [M1586], [P22746-N13] and [T384-N13].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Romero.

Additional information

Communicated by Wolfgang Dahmen.

Appendices

Appendix 1: Proof of Theorem 3.5

In this appendix, we prove Theorem 3.5. The proof is essentially contained in [47], but is not explicitly stated in the required generality. We therefore show how to derive Theorem 3.5 from some technical lemmas in [47].

Remark 6.7

We quote simplified versions of some statements in [47]. The article [47] considers a technical variant of the amalgam space \({W_R(L^\infty ,L^1_w)}({\mathcal {G}})\), called the weak amalgam space \({W_R^\mathrm{weak}(L^\infty ,L^1_w)}\) (see [47, Sect. 2.4]), which we do not wish to introduce here. By [47, Proposition 1], \(L^1({\mathcal {G}}) \hookrightarrow {W_R^\mathrm{weak}(L^\infty ,L^1_w)}({\mathcal {G}}) \hookrightarrow {W_R(L^\infty ,L^1_w)}({\mathcal {G}})\). Some results from [47] that we quote assume that a certain function \(g\) belongs to \({W_R(L^\infty ,L^1_w)}({\mathcal {G}})\) and are proved in [47] under the weaker assumption: \(g \in {W_R^\mathrm{weak}(L^\infty ,L^1_w)}\).

We quote the following estimate:

Lemma 6.8

[25, Lemma 3.8], [47, Lemma 2] Let \(E\) be a solid, translation invariant BF space, let \(w\) be an admissible weight for it, and let \(\varGamma \subseteq {\mathcal {G}}\) be a relatively separated set. Then for every \(f \in E\) and \(g \in W_R(C_0,L^1_w)\), the sequence \((\left<f,L_\lambda g\right>)_{\lambda \in \varLambda }\) belongs to \({E_\mathrm{d}}(\varLambda )\) and

$$\begin{aligned} ||(\left<f,L_\lambda g\right>)_\lambda ||_{{E_\mathrm{d}}} \lesssim ||f||_E||g||_{W_R(L^\infty ,L^1_w)}. \end{aligned}$$

The implicit constants depend on the spreadness \(\rho (\varGamma )\)—cf. (15).

Suppose that Assumptions (A1) and (A2) from Sect. 2.3.2 hold.

For a solid, translation invariant BF space \(E\), we consider an \({L^2}\)-valued version of \({E_\mathrm{d}}(\varGamma )\),

$$\begin{aligned} {E_{\mathrm{d},{L^2}}}={E_{\mathrm{d},{L^2}}}(\varGamma ) := \left\{ \, (f_\gamma )_{\gamma \in \varGamma } \in ({L^2}({\mathcal {G}}))^\varGamma \, \Big | \, (||f_\gamma ||_{L^2})_{\gamma \in \varGamma } \in {E_\mathrm{d}}(\varGamma ) \, \right\} , \end{aligned}$$

and endow it with the norm \(||(f_\gamma )_{\gamma \in \varGamma }||_{{E_{\mathrm{d},{L^2}}}} := ||(||f_\gamma ||_{{L^2}})_{\gamma \in \varGamma }||_{{E_\mathrm{d}}}\).

Let \(\left\{ \, {T_\gamma } \, \Big | \, \gamma \in \varGamma \, \right\} \) be a well-spread family of operators—cf. Sect. 3. Let \(U \subseteq {\mathcal {G}}\) be a relatively compact neighborhood of the identity. Consider the operators \(C_T\) and \(S_U\) formally defined by

$$\begin{aligned} C_T(f)&:= ({T_\gamma }(f))_{\gamma \in \varGamma }, \quad f \in S_E, \end{aligned}$$
(36)
$$\begin{aligned} S_U((f_\gamma )_{\gamma \in \varGamma })&:= \sum _{\gamma \in \varGamma } P(f_\gamma ) 1_{\gamma U}, \quad f_\gamma \in {L^2}({\mathcal {G}}), \end{aligned}$$
(37)

where \(1_{\gamma U}\) denotes the characteristic function of the set \(\gamma U\). These operators satisfy the following mapping properties.

Proposition 6.9

Assume (A1) and (A2), and let \(\left\{ \, {T_\gamma } \, \Big | \, \gamma \in \varGamma \, \right\} \) be a well-spread family of operators. Then the operators \(C_T\) and \(S_U\) in (36) and (37) satisfy the following:

  1. (a)

    The analysis operator \(C_T\) maps \(S_E\) boundedly into \({E_{\mathrm{d},{L^2}}}(\varGamma )\).

  2. (b)

    For every relatively compact neighborhood of the identity \(U\), and every sequence \(F \equiv (f_\gamma )_\gamma \in {E_{\mathrm{d},{L^2}}}\), the series defining \(S_U(F)\) converge absolutely in \({L^2}({\mathcal {G}})\) at every point. Moreover, the operator \(S_U\) maps \({E_{\mathrm{d},{L^2}}}(\varGamma )\) boundedly into \(E\) (with a bound that depends on U).

Proof

Part (b) is proved in [47, Proposition 4 (b)] under a weaker hypothesis. Part (a) is a slight variant of [47, Proposition 4 (a)]; for completeness we give a full argument. Let \((\varGamma , \varTheta , g)\) be an envelope for \(\left\{ \, {T_\gamma } \, \Big | \, \gamma \in \varGamma \, \right\} \).

Let \(f \in S_E\). Since \(\eta _\gamma \) is bounded, \(f \eta _\gamma \in E\). By the definition of well-spread family (cf. 20),

$$\begin{aligned} \left| {T_\gamma }f(x) \right|&\le \int \limits _{\mathcal {G}}\left| f(y) \right| g(\gamma ^{-1}y) \varTheta (y^{-1}x) \mathrm{d}y = \left( \left| f \right| L_\gamma g \right) * \varTheta (x). \end{aligned}$$

By Young’s inequality \(L^1* L^2 \hookrightarrow L^2\), we have

$$\begin{aligned} ||{T_\gamma }f||_2 \le ||\varTheta ||_2 \int \limits _{\mathcal {G}}\left| f(y) \right| g(\gamma ^{-1}y) \mathrm{d}y \lesssim ||\varTheta ||_{W(L^\infty ,L^1_w)} \int \limits _{\mathcal {G}}\left| f(y) \right| g(\gamma ^{-1}y) \mathrm{d}y. \end{aligned}$$

Now Lemma 6.8 yields \( ||C_T(f)||_{{E_{\mathrm{d},{L^2}}}}\lesssim ||f||_{E} ||g||_{W_R(L^\infty ,L^1_w)}\), as desired. \(\square \)

Remark 6.10

Note that in the last proof, the use of the \(L^2\) norm is somewhat arbitrary; a number of other function norms could have been used instead (cf. [47, Proposition 4]).

Now we prove the key approximation result (cf. [47, Theorem 1]).

Theorem 6.11

Assume (A1) and (A2), and let \(\left\{ \, {T_\gamma } \, \Big | \, \gamma \in \varGamma \, \right\} \) be a well-spread family of operators. Given \(\varepsilon >0\), there exists \(U_0\), a relatively compact neighborhood of e such that for all \(U \supseteq U_0\),

$$\begin{aligned} \left\| \sum _{\gamma \in \varGamma } T_\gamma f \!-\! S_UC_Tf\right\| _E \le \varepsilon ||f||_{E}, \quad f \in S_E. \end{aligned}$$
(38)

Remark 6.12

The neighborhood \(U_0\) can be chosen uniformly for any class of spaces \(E\) having the same weight \(w\) and the same constant \(C_{E,w}\) (cf. (16)).

Concerning the parameters in Assumptions (A1) and (A2) and (20), the choice of \(U_0\) only depends on \(||K||_{W(L^\infty ,L^1_w)}\), \(||K||_{W_R(L^\infty ,L^1_w)}\), \(||\varTheta ||_{W(L^\infty ,L^1_w)}\), \(||\varTheta ||_{W_R(L^\infty ,L^1_w)}\), \(||g||_{{W_R(L^\infty ,L^1_w)}}\), and \(\rho (\varGamma )\) (cf. (15)).

Proof of Theorem 6.11

Let \(f \in S_E\), and let \(U\) be a relatively compact neighborhood of e. Because of the inclusion \(S_E\hookrightarrow W(L^\infty ,E)\) in Proposition 2.6, it suffices to dominate the left-hand side of (38) by \(\varepsilon ||f||_{W(L^\infty ,E)}\).

Note that since \({T_\gamma }f \in S_E\), \(S_UC_Tf(x) = \sum _{\gamma \in \varGamma } {T_\gamma }f(x) 1_{\gamma U}(x)\). Hence, using (20), let us estimate

$$\begin{aligned} \left| \sum _{\gamma \in \varGamma } {T_\gamma }f(x) - S_UC_Tf(x) \right|&= \left| \sum _{\gamma \in \varGamma } 1_{\gamma ({\mathcal {G}}\setminus U)}(x) {T_\gamma }(f)(x) \right| \\&\le \sum _{\gamma \in \varGamma } \int \limits _{{\mathcal {G}}} \left| f(y) \right| g(\gamma ^{-1}y) \varTheta (y^{-1}x) 1_{\gamma ({\mathcal {G}}\setminus U)}(x) \mathrm{d}y. \end{aligned}$$

The rest of the proof is carried out exactly as in [47, Theorem 1]. Indeed, the proof there only depends on the estimate just derived.Footnote 2 (The definition of well-spread family of operators was tailored so that the proof in [47, Theorem 1] would still work.) \(\square \)

Finally, we can prove Theorem 3.5.

Proof of Theorem 3.5

Let \(\left\{ {T_\gamma }: \gamma \in \varGamma \right\} \) be a well-spread family of operators, and suppose that the operator \(\sum _\gamma {T_\gamma }: S_E\rightarrow S_E\) is invertible. We have to show that for \(f \in S_E\), \(||f||_E\approx ||C_T(f)||_{{E_{\mathrm{d},{L^2}}}(\varGamma )}\). The estimate \(||C_T(f)||_{{E_{\mathrm{d},{L^2}}}(\varGamma )} \lesssim ||f||_E\) is proved in Proposition 6.9 (a). To establish the second inequality, consider the operator \(PS_UC_T: S_E\rightarrow S_E\). Then for \(f \in S_E\),

$$\begin{aligned} \left\| \sum _{\gamma \in \varGamma } {T_\gamma }f \!-\! P S_UC_Tf\right\| _E\!=\! \left\| P \sum _{\gamma \in \varGamma } {T_\gamma }f \!-\!PS_UC_Tf \right\| _E\lesssim \left\| \sum _{\gamma \in \varGamma } {T_\gamma }f \!-\!S_UC_Tf\right\| _E. \end{aligned}$$

This estimate, together with Theorem 6.11, implies that \(||\sum _\gamma {T_\gamma }- P S_UC_T||_{S_E\rightarrow S_E} \rightarrow 0\) as \(U\) grows to \({\mathcal {G}}\). Hence, there exists \(U\) such that \(PS_UC_T\) is invertible on \(S_E\). Consequently, for \(f \in S_E\), \(||f||_E\approx ||PS_UC_Tf||_E\lesssim ||C_T(f)||_{{E_{\mathrm{d},{L^2}}}(\varGamma )}\). Here we have used the boundedness of \(S_U\)—contained in Proposition 6.9 (b)—and the boundedness of \(P:E\rightarrow W(L^\infty ,E) \hookrightarrow E\)—contained in Proposition 2.6. \(\square \)

Appendix 2: Pseudodifferential Operators and Proof of Proposition 4.3

The Weyl transform of a distribution \(\sigma \in \mathcal {S}'({{\mathbb R}^d}\times {{\mathbb R}^d})\) is an operator \(\sigma ^w\) that is formally defined on functions \(f:{{\mathbb R}^d}\rightarrow {\mathbb C}\) as

$$\begin{aligned} \sigma ^w (f)(x) := \int \limits _{{{\mathbb R}^d}\times {{\mathbb R}^d}} \sigma \left( \frac{x+y}{2},\xi \right) e^{2\pi i(x-y)\xi } f(y) \mathrm{d}y \mathrm{d}\xi , \quad x \in {{\mathbb R}^d}. \end{aligned}$$

The fundamental results in the theory of pseudodifferential operators provide conditions on \(\sigma \) for the operator \(\sigma ^w\) to be well defined and bounded on various function spaces. We now quote some results about pseudodifferential operators acting on modulation spaces—cf. Sect. 4.1.

In [34, 35], it was shown that modulation spaces on \({{\mathbb R}^{2d}}\) serve as symbol classes to study pseudodifferential operators acting on modulation spaces on \({{\mathbb R}^d}\), recovering and extending classical results from Sjöstrand [50, 51]. We quote the following simplified version of [35, Theorems 4.1, 4.6, and Corollaries 3.3, 4.7]. (The GRS-condition for admissible weights in Sect. 4.1 is important here.)

Theorem 6.13

Let \(w\) be an admissible TF weight—cf. Definition 4.1—and let \(\varphi \in M^1_w({{\mathbb R}^d})\) be nonzero. Let us denote \(\widetilde{w}(z_1,z_2) = w(-z_2,z_1)\). Then the following statements hold true:

  1. (i)

    If \(\sigma \in M^{\infty ,1}_{\widetilde{w}}({{\mathbb R}^{2d}})\), then \(\sigma ^w\) is bounded on \(M^p_v({{\mathbb R}^d})\) for all \(w\)-moderated weights \(v\) and all \(p \in [1,+\infty ]\).

  2. (ii)

    If \(\sigma \in M^{\infty ,1}_{\widetilde{w}}({{\mathbb R}^{2d}})\) and \(\sigma ^w\) is invertible as an operator on \({{L^2}({\mathbb R}^d)}\), then \(\sigma ^w\) is invertible as an operators on \(M^p_v({{\mathbb R}^d})\) for all \(w\)-moderated weights \(v\) and all \(p \in [1,+\infty ]\).

  3. (iii)

    Let \(T:\mathcal {S}({{\mathbb R}^d})\rightarrow \mathcal {S}'({{\mathbb R}^d})\) be a linear and continuous operator. For \((x,\xi ) \in {{\mathbb R}^d}\times {{\mathbb R}^d}\) let us denote \(\varphi _{(x,\xi )}(t):=e^{2\pi i \xi t}\varphi (t-x)\). If there exists a function \(H \in L^1_w({{\mathbb R}^{2d}})\) such that

    $$\begin{aligned} \left| \left<T(\varphi _{(x,\xi )}),\varphi _{(x',\xi ')}\right> \right| \le H(x'-x,\xi '-\xi ), \quad (x,\xi ),(x',\xi ') \in {{\mathbb R}^d}\times {{\mathbb R}^d}, \end{aligned}$$

    then there exists \(\sigma \in M^{\infty ,1}_{\widetilde{w}}({{\mathbb R}^{2d}})\) such that \(T=\sigma ^w\) on \(\mathcal {S}({{\mathbb R}^d})\).

As an application of Theorem 6.13, we now prove Proposition 4.3.

Proof of Proposition 4.3

With the notation of Theorem 6.13, we use (23) to estimate

$$\begin{aligned} \left| \left<T(\varphi _{(x,\xi )}),\varphi _{(x',\xi ')}\right> \right|&=\left| V_\varphi T(\varphi _{(x,\xi )})(x',\xi ') \right| \\&\le \int \limits _{{{\mathbb R}^{2d}}} \left| V_\varphi \varphi _{(x,\xi )}(z'') \right| H((x',\xi ')-z'') \mathrm{d}z''\\&= \int \limits _{{{\mathbb R}^{2d}}} \left| V_\varphi \varphi (z''-(x,\xi )) \right| H((x',\xi ')-z'') \mathrm{d}z''\\&= (H*\left| V_\varphi \varphi \right| )((x',\xi ')-(x,\xi )). \end{aligned}$$

Since \(\varphi \in {M^1_w}({{\mathbb R}^d})\) and \(H \in L^1_w({{\mathbb R}^{2d}})\), we deduce that \(H*\left| V_\varphi \varphi \right| \in L^1_w({{\mathbb R}^{2d}})\).

Hence, Theorem 6.13 implies that there exists \(\sigma \in M^{\infty ,1}_{\widetilde{w}}({{\mathbb R}^{2d}})\) such that \(T \equiv \sigma ^w\) on \(\mathcal {S}({{\mathbb R}^d})\). Since both operators are bounded on \(L^2({{\mathbb R}^d})\), it follows that \(T \equiv \sigma ^w\) on \({{L^2}({\mathbb R}^d)}\). By hypothesis, \(T=\sigma ^w: {{L^2}({\mathbb R}^d)}\rightarrow {{L^2}({\mathbb R}^d)}\) is invertible. A new application of Theorem 6.13 implies that \(\sigma ^w: M^p_v({{\mathbb R}^d}) \rightarrow M^p_v({{\mathbb R}^d})\) is invertible. It is tempting to conclude that then \(T:M^p_v({{\mathbb R}^d}) \rightarrow M^p_v({{\mathbb R}^d})\) is invertible because it “is” \(\sigma ^w\). If \(p<+\infty \), that conclusion is indeed correct because both operators coincide on the dense space \(\mathcal {S}\). The case \(p=+\infty \) requires some care. We now discuss this in detail.

We note that \(M^p_v({{\mathbb R}^d}) \hookrightarrow M^\infty _{1/w}({{\mathbb R}^d})\) and use the facts that \(M^\infty _{1/w}({{\mathbb R}^d})\) can be identified with the dual-space of the (separable) Banach space \(M^1_w({{\mathbb R}^d})\) and that \(\mathcal {S}\) is dense in \(M^\infty _{1/w}({{\mathbb R}^d})\) with respect to the weak* topology (see [33, Chap. 11]). To conclude that \(T=\sigma ^w\) on \(M^p_v({{\mathbb R}^d})\), we show that both operators are continuous with respect to the weak* topology of \(M^\infty _{1/w}\).

Let \(f \in M^p_v({{\mathbb R}^d})\), and let us show that \(T(f)=\sigma ^w(f)\). Let \(\left\{ f_k: k \in {\mathbb N} \right\} \subseteq \mathcal {S}({{\mathbb R}^d})\) be a sequence such that \(f_k \longrightarrow f\) in the weak* topology of \(M^\infty _{1/w}({{\mathbb R}^d})\). The operator \(\sigma ^w:M^\infty _{1/w}({{\mathbb R}^d}) \rightarrow M^\infty _{1/w}({{\mathbb R}^d})\) is weak* continuous because it is the adjoint of the operator \(\overline{\sigma }^{w}: M^1_w({{\mathbb R}^d}) \rightarrow M^1_w({{\mathbb R}^d})\). Hence \(T(f_k) = \sigma ^w(f_k) \longrightarrow \sigma ^w(f)\) in the weak* topology of \(M^\infty _{1/w}({{\mathbb R}^d})\). Let us note that this implies that

$$\begin{aligned} V_\varphi T(f_k) (z) \longrightarrow V_\varphi \sigma ^w(f)(z), \text{ as } k \longrightarrow +\infty , \text{ for } \text{ all } \quad z \in {{\mathbb R}^{2d}}. \end{aligned}$$
(39)

Indeed, if \(z=(x,\xi ) \in {{\mathbb R}^d}\times {{\mathbb R}^d}\), the function \(\varphi _{(x,\xi )} :=e^{2\pi i \xi \cdot }\varphi (\cdot -x)\) belongs to \(M^1_w({{\mathbb R}^d})\) and consequently \(V_\varphi T(f_k)(z) = \left<T(f_k),\varphi _{(x,\xi )}\right> \longrightarrow \left<\sigma ^w(f),\varphi _{(x,\xi )}\right>= V_\varphi \sigma ^w(f)(z)\). Similarly, since \(f_k \longrightarrow f\) in the weak* topology of \(M^\infty _{1/w}\), we know that \(V_\varphi f_k (z) \longrightarrow V_\varphi f(z)\) for all \(z \in {{\mathbb R}^{2d}}\).

Using the enveloping condition in (23), we estimate for \(z \in {{\mathbb R}^{2d}}\):

$$\begin{aligned} \left| V_\varphi T(f)(z)- V_\varphi T(f_k)(z) \right|&\le \int \limits _{{{\mathbb R}^{2d}}} \left| V_\varphi (f-f_k)(z') \right| H(z-z') \mathrm{d}z'. \end{aligned}$$

The integrand in the last expression tends to \(0\) pointwise as \(k \longrightarrow +\infty \). In order to apply Lebesgue’s dominated convergence theorem, we show that the integrand is dominated by an integrable function. Since \(H \in L^1_w({{\mathbb R}^{2d}})\), it suffices to show that \(\sup _k ||V_\varphi (f-f_k)||_{L^\infty _{1/w}} < +\infty \). This is true because \(||V_\varphi (f-f_k)||_{L^\infty _{1/w}}=||f-f_k||_{M^\infty _{1/w}}\) and weak*-convergent sequences are bounded. Hence, Lebesgue’s dominated convergence theorem can be applied, and we conclude that \(V_\varphi T(f_k) (z) \longrightarrow V_\varphi T(f)(z)\) for all \(z \in {{\mathbb R}^{2d}}\). Combining this with (39), we conclude that \(V_\varphi T(f) \equiv V_\varphi \sigma ^w(f)\). Hence \(T(f)= \sigma ^w(f)\), as desired. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dörfler, M., Romero, J.L. Frames Adapted to a Phase-Space Cover. Constr Approx 39, 445–484 (2014). https://doi.org/10.1007/s00365-014-9236-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-014-9236-4

Keywords

Mathematics Subject Classification

Navigation