Skip to main content
Log in

Detecting a structural change in functional time series using local Wilcoxon statistic

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Functional data analysis is a part of modern multivariate statistics that analyzes data that provide information regarding curves, surfaces, or anything that varies over a certain continuum. In economics and empirical finance, we often have to deal with time series of functional data, where decision cannot be made easily, for example whether they are to be considered as homogeneous or heterogeneous. A discussion on adequate tests of homogenity for functional data is carried out in literature nowadays. We propose a novel statistic for detecting a structural change in functional time series based on a local Wilcoxon statistic induced by a local depth function proposed by Paindaveine and Van Bever, and where a point of the hypothesized structural change is assumed to be known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Bosq D (2000) Linear processes in function spaces. Springer, New York

    Book  Google Scholar 

  • Cuesta-Albertos J, Nieto-Reyes A (2008) The random Tukey depth. Comput Stat Data Anal 52:4979–4988

    Article  MathSciNet  Google Scholar 

  • Cuevas A, Febrero-Bande M, Fraiman R (2007) Robust estimation and classification for functional data via projection-based depth notions. Comput Stat 22(3):481–496

    Article  MathSciNet  Google Scholar 

  • Diebold F, Li C (2006) Forecasting the term structure of government bond yields. J Econom 130(2):337–364

    Article  MathSciNet  Google Scholar 

  • Didericksen D, Kokoszka P, Zhang X (2012) Empirical properties of forecasts with the functional autoregressive model. Comput Stat 27(2):285–298

    Article  MathSciNet  Google Scholar 

  • Febrero-Bande M, de la Fuente M (2012) Statistical computing in functional data analysis: the R package fda.usc. J Stat Softw 51(4):1–28

    Article  Google Scholar 

  • Flores R, Lillo R, Romo J (2015) Homogenity test for functional data. arXiv:1507.01835v1

  • Fraiman R, Muniz G (2001) Trimmed means for functional data. Test 10(2):419–440

    Article  MathSciNet  Google Scholar 

  • Fraiman R, Justel A, Liu R, Llop P (2014) Detecting trends in time series of functional data: a study of Antarctic climate change. Can J Stat 42(4):597–609

    Article  MathSciNet  Google Scholar 

  • Hájek J, Sidák Z (1967) Theory of rank tests. Academic Press, New York

    MATH  Google Scholar 

  • Hall P, Rodney CL, Yao Q (2003) Comprehensive definitions of breakdown points for independent and dependent observations. J R Stat Soc B 65:81–84

    Article  MathSciNet  Google Scholar 

  • Horváth L, Kokoszka P (2012) Inference for functional data with applications. Springer, New York

    Book  Google Scholar 

  • Horváth L, Kokoszka P, Rice G (2014) Testing stationarity of functional time series. J Econom 179:66–82

    Article  MathSciNet  Google Scholar 

  • Hyndman RJ, Shang HL (2010) Rainbow plots, bagplots, and boxplots for functional data. J Comput Graph Stat 19(1):29–45

    Article  MathSciNet  Google Scholar 

  • Hyndman R, Einbeck J, Wand M (2013) The R package hdrcde

  • Jureĉková J, Kalina J (2012) Nonparametric multivariate rank tests and their unbiasedness. Bernoulli 18(1):229–251

    Article  MathSciNet  Google Scholar 

  • Kong L, Zuo Y (2010) Smooth depth contours characterize the underlying distribution. J Multivar Anal 101:2222–2226

    Article  MathSciNet  Google Scholar 

  • Kosiorowski D (2016) Dilemmas of robust analysis of economic data streams. J Math Sci 1(2):59–72

    MathSciNet  MATH  Google Scholar 

  • Kosiorowski D, Zawadzki Z (2014) DepthProc: an R package for robust exploration of multidimensional economic phenomena. http://arxiv.org/pdf/1408.4542. Accessed 5 April 2016

  • Kosiorowska E, Kosiorowski D, Zawadzki Z (2014) Evaluation of the fourth millenium developement goal realisation using multivariate nonparametric depth tools offered by DepthProc R package. Folia Oecon Stetin 15(1):34–52

    Article  Google Scholar 

  • Li J, Liu R (2004) New nonparametric tests of multivariate locations and scales using data depth. Stat Sci 19(4):686–696

    Article  MathSciNet  Google Scholar 

  • Liu R (1990) On a notion of data depth based on random simplices. Ann Stat 18:405–414

    Article  MathSciNet  Google Scholar 

  • Liu R, Singh K (1995) A quality index based on data depth and multivariate rank tests. J Am Stat Assoc 88:252–260

    MathSciNet  MATH  Google Scholar 

  • Liu R, Parelius JM, Singh K (1999) Multivariate analysis by data depth: descriptive statistics, graphics and inference (with discussion). Ann Stat 27:783–858

    MATH  Google Scholar 

  • López-Pintado S, Jörnsten R (2007) Functional analysis via extensions of the band depth. IMS lecture notes–monograph series complex datasets and inverse problems: tomography, networks and beyond, vol 54. Institute of Mathematical Statistics, Hayward, pp 103–120

  • López-Pintado S, Romo J (2007) Depth-based inference for functional data. Comput Stat Data Anal 51:4957–4968

    Article  MathSciNet  Google Scholar 

  • Mosler K (2013) Depth statistics. Robustness and complex data structures. Springer, Heidelberg, pp 17–34

    Google Scholar 

  • Lange T, Mosler K, Mozharovsky P (2015) Fast nonparametric classification based on data depth. Stat Pap 55(1):49–69

    Article  MathSciNet  Google Scholar 

  • Nagy S, Hlubinka D, Gijbels I (2016) Integrated depth for functional data: statistical properties and consistency. ESIAM Probab Stat 20:95–130

    Article  MathSciNet  Google Scholar 

  • Nieto-Reyes A, Battey H (2016) A topologically valid definition of depth for functional data. Stat Sci 31(1):61–79

    Article  MathSciNet  Google Scholar 

  • Paindaveine D, Van Bever G (2013) From depth to local depth: a focus on centrality. J Am Stat Assoc 108(503):1105–1119

    Article  MathSciNet  Google Scholar 

  • Ramsay J, Silverman B (2005) Functional data analysis. Springer, New York

    Book  Google Scholar 

  • Ramsay J, Hooker G, Graves S (2009) Functional data analysis with R and Matlab. Springer, New York

    Book  Google Scholar 

  • Serfling R (2006) Depth functions in nonparametric multivariate inference. In: Liu R, Serfling R, Souvaine D (eds) Series in discrete mathematics and theoretical computer science, vol 72. AMS, Providence, pp 1–15

    Google Scholar 

  • Sguera C, Galeano P, Lillo RE (2016) Global and local functional depths. arXiv:1607.05042v1

  • Shang HL (2016) Bootstrap methods for stationary functional time series. Stat Comput (to appear)

  • Vinod HD, de Lacalle JL (2009) Maximum entropy bootstrap for time series: the meboot R package. J Stat Softw 29:5

    Article  Google Scholar 

  • Wilcox R (2014) Introduction to robust estimation and hypothesis testing. Academic Press, San Diego

    MATH  Google Scholar 

  • Zuo Y, Serfling R (2000) Structural properties and convergence results for contours of sample statistical depth functions. Ann Stat 28:483–499

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

JPR research has been partially supported by the AGH local Grant No. 15.11.420.038, MS research has been partially supported by Cracow University of Economics local Grant Nos. 045.WF.KRYF.01.2015.S.5045, 161.WF.KRYF.02.2015.M.5161, and National Science Center Grant No. NCN.OPUS.2015.17.B.HS4.02708. DK research has been supported by the CUE local Grants 2016 and 2017 for preserving scientific resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy P. Rydlewski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosiorowski, D., Rydlewski, J.P. & Snarska, M. Detecting a structural change in functional time series using local Wilcoxon statistic. Stat Papers 60, 1677–1698 (2019). https://doi.org/10.1007/s00362-017-0891-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-017-0891-y

Keywords

Mathematics Subject Classification

Navigation