Skip to main content
Log in

Modelling long-range dependence and trends in duration series: an approach based on EFARIMA and ESEMIFAR models

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Duration series often exhibit long-range dependence and local nonstationarities. Here, exponential FARIMA (EFARIMA) and exponential SEMIFAR (ESEMIFAR) models are introduced. These models capture simultaneously nonstationarities in the mean as well as short- and long-range dependence, while avoiding the complication of unobservable latent processes. The models can be thought of as locally stationary long-memory extensions of exponential ACD models. Statistical properties of the models are derived. In particular the long-memory parameter in the original and the log-transformed process is the same. For Gaussian innovations, exact explicit formulas for all moments and autocovariances are given, and the unconditional distribution is log-normal. Estimation and model selection can be carried out with standard software. The approach is illustrated by an application to average daily transaction durations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baillie RT, Bollerslev T, Mikkelsen HO (1996) Fractionally integrated generalized autoregressive conditional heteroskedasticity. J Econom 74:3–30

    Article  MATH  MathSciNet  Google Scholar 

  • Bauwens L, Giot P (2000) The logarithmic ACD model: an application to the bid-ask quote process of three NYSE stocks. Ann Econ Stat 60:117–149

    Google Scholar 

  • Bauwens L, Galli F, Giot P (2003) The moments of log-ACD models. Discussion Paper 2003/11, Université Catholique de Louvain

  • Bauwens L, Hautsch N (2007) Modelling financial high frequency data using point processes. CRC Discussion Paper No. 2007–066

  • Beran J (1994) Statistics for long-memory processes. Chapman & Hall, New York

    MATH  Google Scholar 

  • Beran J (1995) Maximum likelihood estimation of the differencing parameter for invertible short- and long-memory ARIMA models. J R Stat Soc Ser B 57:659–672

    MATH  MathSciNet  Google Scholar 

  • Beran J, Bhansali RJ, Ocker D (1998) On unified model selection for stationary and nonstationary short- and long-memory autoregressive processes. Biometrika 85(4):921–934

    Article  MATH  MathSciNet  Google Scholar 

  • Beran J, Feng Y (2002a) SEMIFAR models—a semiparametric framework for modelling trends, long-range dependence and nonstationarity. Comput Stat Data Anal 40:393–419

    Article  MATH  MathSciNet  Google Scholar 

  • Beran J, Feng Y (2002b) Iterative plug-in algorithms for SEMIFAR models—definition, convergence and asymptotic properties. J Comput Graph Stat 11:690–713

    Article  MathSciNet  Google Scholar 

  • Beran J, Feng Y (2002c) Local polynomial fitting with long-memory, short-menory and antipersistent errors. Ann Inst Stat Math 54:291–311

    Article  MATH  MathSciNet  Google Scholar 

  • Beran J, Feng Y, Ghosh S, Kulik R (2013) Long memory processes—probabilistic properties and statistical models. Springer, Heidelberg

    Google Scholar 

  • Beran J, Feng Y, Ghosh S, Wang K (2012) Modelling long term and conditional dynamics in average durations by a semiparametric ACD. University of Konstanz, Preprint

    Google Scholar 

  • Beran J, Ocker D (1999) SEMIFAR forecasts, with applications to foreign exchange rates. J Stat Plan Inference 80:137–153

    Article  MATH  MathSciNet  Google Scholar 

  • Bertram P, Kruse R, Sibbertsen P (2013) Fractional integration versus level shifts: the case of realized asset correlations. Stat Pap 54:977–991

    Article  MATH  MathSciNet  Google Scholar 

  • Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity. J Econom 31:307–327

    Article  MATH  MathSciNet  Google Scholar 

  • Bollerslev T, Mikkelsen H (1996) Modeling and pricing long memory in stock market volatility. J Econom 73:151–184

    Article  MATH  MathSciNet  Google Scholar 

  • Dahlhaus R (1997) Fitting time series models to nonstationary processes. Ann Stat 25:1–37

    Article  MATH  MathSciNet  Google Scholar 

  • Deo R, Hsieh M, Hurvich C (2010) Long memory in intertrade durations, counts and realized volatility of nyse stocks. J Stat Plan Inference 140:3715–3733

    Article  MATH  MathSciNet  Google Scholar 

  • Deo R, Hurvich C, Soulier P, Wang Y (2009) Conditions for the propagation of memory parameter from durations to counts and realized volatility. Econom Theory 25:764–792

    Article  MATH  MathSciNet  Google Scholar 

  • Dittmann I, Granger C (2002) Properties of nonlinear transformations of fractionally integrated processes. J Econom 110:113–133

    Article  MATH  MathSciNet  Google Scholar 

  • Dufour A, Engle RF (2000) The ACD model: predictability of the time between consecutive trades. Discussion Papers in Finance, ISMA Centre 59

  • Engle RF (1982) Autoregressive conditional heteroskedasticity with estimation of UK inflation. Econometrica 50:987–1008

    Article  MATH  MathSciNet  Google Scholar 

  • Engle RF, Russell JR (1998) Autoregressive conditional duration: a new model for irregularly spaced transaction data. Econometrica 66:1127–1162

    Article  MATH  MathSciNet  Google Scholar 

  • Fernandes M, Grammig J (2006) A family of autoregressive conditional duration models. J Econom 130: 1–23

    Google Scholar 

  • Fox R, Taqqu MS (1986) Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series. Ann Stat 14:517–532

    Article  MATH  MathSciNet  Google Scholar 

  • Geweke J (1986) Modelling the persistence of conditional variance: a comment. Econom Rev 5:57–61

    Article  Google Scholar 

  • Giraitis L, Koul HL, Surgailis D (2012) Large sample inference for long memory processes. Imperial College Press, London

    Book  MATH  Google Scholar 

  • Giraitis L, Surgailis D (1989) Limit theorem for polynomials of a linear process with long-range dependence. Lith Math J 29(2):128–145

    Article  MATH  MathSciNet  Google Scholar 

  • Giraitis L, Surgailis D (1990) A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotical normality of Whittle’s estimate. Probab Theory Relat Fields 86(1):87–104

    Article  MATH  MathSciNet  Google Scholar 

  • Hall P, Hart JD (1990) Nonparametric regression with long-range dependence. Stoch Process Appl 36: 339–351

    Google Scholar 

  • Haslett J, Raftery AE (1989) Space-time modelling with long-memory dependence: assessing Ireland’s wind power resource. Appl Stat 38:1–50

    Article  Google Scholar 

  • Hautsch N (2004) Modeling irregularly spaced financial data—theory and practice of dynamic duration models. Lecture Notes in Economics and Mathematical Systems, vol. 539. Springer: Berlin

  • Hautsch N (2012) Econometrics of financial high-frequency data. Springer, Berlin

    Book  MATH  Google Scholar 

  • Jasiak J (1998) Persistence in intertrade durations. Finance 19:166–195

    Google Scholar 

  • Jarque CM, Bera AK (1987) A test for normality of observations and regression residuals. Int Stat Rev 55:163172

    Article  MathSciNet  Google Scholar 

  • Karanasos M (2004) Statistical properties of long-memory ACD models. WESEAS Trans Bus Econ 1:169–175

    Google Scholar 

  • Karanasos M (2008) The statistical properties of exponential ACD models. Quant Qual Anal Soc Sci 2:29–49

    Google Scholar 

  • Koulikov D (2003) Modeling sequences of long memory non-negative stationary random variables. Working Paper 331100, Social Science Research Network

  • Künsch HR (1987) Statistical aspects of self-similar processes. In: Proceedings of the First World Congress of the Bernoulli Society, vol. 1, Utrecht: VNU Science, pp 6774

  • Lopes S, Prass T (2012) Theoretical results on FIEGARCH processes. Preprint, Mathematics Institute—UFRGS

  • Menendez P, Ghosh S, Künsch H, Tinner W (2013) On trend estimation under monotone Gaussian subordination with long memory: application to fossil pollen series. J Nonparametr Stat 25(4):765–785

    Google Scholar 

  • Nelson DB (1991) Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59: 347–370

    Google Scholar 

  • Pacurar M (2008) Autoregressive conditional duration (ACD) models in finance: a survey of the theoretical and empirical literature. J Econ Surv 22:711–751

    Article  Google Scholar 

  • Qu Z (2011) A test against spurious long memory. J Bus Econ Stat 29:423–438

    Article  MATH  Google Scholar 

  • Ray BK, Tsay RS (1997) Bandwidth selection for kernel regression with long-range dependence. Biometrika 84:791–802

    Article  MATH  MathSciNet  Google Scholar 

  • Russell JR, Engle RF (2010) Analysis of high frequency data. In: Ait-Sahalia Y, Hansen LP (eds.) Handbook of financial econometrics, vol. 1, pp 383–426. Elsevier

  • Sun W, Rachev S, Fabozzi F, Kalev P (2008) Fractals in trade duration: capturing long-range dependence and heavy tailedness in modeling trade duration. Ann Financ 4:217–241

    Article  MATH  Google Scholar 

  • Surgailis D, Vaičiulis M (1999) Convergence of Appell polynomials of long range dependent moving averages in martingale differences. Acta Appl Math 58(1–3):343–357

    Article  MATH  MathSciNet  Google Scholar 

  • Taqqu MS, Teverovsky V (1998) On estimating the intensity of long-range dependence in finite and infinite variance series. In: Adler R, Feldman R, Taqqu MS (eds) A practical guide to heavy tails: statistical techniques and applications. Birkhäuser, Boston, pp 177–217

    Google Scholar 

  • Taqqu MS (1975) Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z Wahrsch Verw Gebiete 31:287–302

    Article  MATH  MathSciNet  Google Scholar 

  • Zivot E, Wang J (2003) Modeling financial time series with S-PLUS. Springer, New York

    Book  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the Editor and two referees for their comments and suggestions, which helped to improve the quality of this paper. The financial data sets were prepared by Mr. Christian Peitz and Mr. Kan Wang, University of Paderborn. We are very grateful for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Beran.

Appendix

Appendix

1.1 Proofs of results

Proof of Lemma 1

Here only a sketched proof will be given. Under the conditions of Lemma 1, \(Z_{t}\) is the strictly stationary solution of \(Z_{t}=\ln (X_{t}^{*})\). This even holds without the normal assumption on \(\epsilon _{t}\). If a stationary solution of \(X_{t}^{*}\) exists, then it must be \(X_{t}^{*}=\exp (Z_{t})=\prod \nolimits _{i=0}^{\infty }\eta _{t-i} ^{a_{i}}\) as given in (8). This solution can also be obtained through a recursive expansion of \(X_{t}^{*}=\lambda _{t}\eta _{t}\) by means of the explicit definition of \(\lambda _{t}\) given in (10) and a technique similar to a Volterra expansion. This is however too complex and unnecessary in the current context, because we are dealing with a log-linear process. Details on this point are omitted to save space.

Now, the question hence reduces to check the stationarity of \(X_{t}^{*}\) defined in (8). The answer depends on moment properties of \(\epsilon _{t}\). Under the assumption that \(\epsilon _{t}\) is an i.i.d. Gaussian process with mean zero and variance \(\sigma _{\epsilon }^{2}\), the marginal distribution of \(Z_{t}\) is \(Z_{t}\sim N(0,\sigma ^{2})\), where \(\sigma ^{2}=\sigma _{\epsilon }^{2}\sum \nolimits _{i=0}^{\infty }\alpha _{i}^{2}\) is as defined in Theorem 1. Hence the marginal distribution of \(X_{t}^{*}\) is \(LN(0,\sigma ^{2})\). Moments of \(X_{t}^{*}\) of any order are finite. The fact that \(X_{t}^{*}\) is strictly stationary follows directly from its time invariant infinite product of independent normal random variables. Straightforward analysis based on this representation shows that \(X_{t}^{*}\) is also weakly stationary, because \(E(X_{t}^{*})\) and \(cov(X_{t}^{*},X_{t+k}^{*})\) exist and do not depend on \(t\). Detailed results on the moments and acf of \(X_{t}^{*}\) may be found in Theorem 1.

Proof of Theorem 1

  1. (i)

    Let \(G\) denote a generic log-normal random variable with the scale parameter \(\mu \) and shape parameter \(\sigma \). Then we have \(E(G^{s})=e^{s\mu +\frac{1}{2}s^{2}\sigma ^{2}}\). Note that \(X_{t}^{*}\sim LN(0,\sigma ^{2})\). Inserting the two parameters \(\mu =0\) and \(\sigma ^{2}\) into this formula we obtain \(E[(X_{t}^{*})^{s}]=e^{s^{2}\sigma ^{2}/2}\) as given in Theorem 1 (i).

  2. (ii)

    We have

    $$\begin{aligned} var(X_{t}^{*})&=E[(X_{t}^{*})^{2}]-[E(X_{t}^{*})]^{2}\\&=e^{4\sigma ^{2}/2}-[e^{\sigma ^{2}/2}]^{2}\\&=e^{\sigma ^{2}}\left( e^{\sigma ^{2}}-1\right) , \end{aligned}$$

    which can also be obtained as a special case of \(\gamma _{X^{*}}(k)\) with \(k=0\). Furthermore note that \(E(X_{t}^{*})E(X_{t+k}^{*})=[E(X_{t}^{*})]^{2}=e^{\sigma ^{2}}\), because \(X_{t}^{*}\) is stationary. The expectation of \(X_{t}^{*}X_{t+k}^{*}\) can be calculated as follows.

    $$\begin{aligned} E(X_{t}^{*}X_{t+k}^{*})&=E\left( \prod \limits _{i=0}^{\infty }\eta _{t-i}^{a_{i}}\prod \limits _{i=0}^{\infty }\eta _{t-i+k}^{a_{i}}\right) \\&=E\left( \prod \limits _{i=0}^{k-1}\eta _{t-i}^{a_{i}}\prod \limits _{i=0}^{\infty }\eta _{t-i+k}^{a_{i}+a_{i+k}}\right) \\&=\prod \limits _{i=0}^{k-1}E\left( \eta _{t-i}^{a_{i}}\right) \prod \limits _{i=0}^{\infty }E\left( \eta _{t-i+k}^{a_{i}+a_{i+k}}\right) \\&=\prod \limits _{i=0}^{k-1}e^{a_{i}^{2}\sigma _{\epsilon }^{2}/2}\prod \limits _{i=0}^{\infty }e^{(a_{i}+a_{i+k})^{2}\sigma _{\epsilon }^{2}/2}\\&=\prod \limits _{i=0}^{\infty }e^{a_{i}^{2}\sigma _{\epsilon }^{2}/2}\prod \limits _{i=0}^{\infty }e^{a_{i}^{2}\sigma _{\epsilon }^{2}/2}\prod \limits _{i=0}^{\infty }e^{2a_{i}a_{i+k}\sigma _{\epsilon }^{2}/2}\\&=e^{\sigma ^{2}}e^{\sigma _{\epsilon }^{2}\sum \limits _{i=0}^{\infty }a_{i}a_{i+k}}. \end{aligned}$$

    This leads to

    $$\begin{aligned} \gamma _{X^{*}}(k)&=e^{\sigma ^{2}}e^{\sigma _{\epsilon }^{2} \sum \limits _{i=0}^{\infty }a_{i}a_{i+k}}-e^{\sigma ^{2}}\nonumber \\&=e^{\sigma ^{2}}\left( e^{\sigma _{\epsilon }^{2}\sum \limits _{i=0}^{\infty }a_{i}a_{i+k}}-1\right) . \end{aligned}$$
    (18)
  3. (iii)

    We obtain the formulas of \(\rho _{X}(k)\) by inserting results in \(ii\)) into \(\rho _{X}(k)=\gamma _{X^{*}}(k)/var(X_{t}^{*})\).

  4. (iv)

    Note that \(\sigma _{\epsilon }^{2}\sum \limits _{i=0}^{\infty }a_{i} a_{i+k}=\rho _{Z}(k)\sigma ^{2}\). By means of Taylor expansion of the exponential function we obtain

    $$\begin{aligned} \rho _{X}(k)=\left\{ \sum \limits _{i=1}^{\infty }[\rho _{Z}(k)\sigma ^{2} ]^{i}/i!\right\} \left\{ \sum \limits _{i=1}^{\infty }[\sigma ^{2} ]^{i}/i!\right\} ^{-1}. \end{aligned}$$
    (19)

    Now we will show that the first sum on the right hand side of (19) is dominated by its first term \(\rho _{Z}(1)\sigma ^{2}\). Note that \(0<\rho _{Z}(k)<1\), if \(k\) is large enough. We have

    $$\begin{aligned} \sum \limits _{i=2}^{\infty }[\rho _{Z}(k)\sigma ^{2}]^{i}/i!&<[\rho _{Z}(k)]^{2}\sum \limits _{i=2}^{\infty }[\sigma ^{2}]^{i}/i!\\&=[\rho _{Z}(k)]^{2}(e^{\sigma ^{2}}-1-\sigma ^{2})\\&=O\{[\rho _{Z}(k)]^{2}\}. \end{aligned}$$

    Hence, we have

    $$\begin{aligned} \rho _{X^{*}}(k)=\rho _{Z}[c_{X}^{\mathrm {e}}+o(1)], \end{aligned}$$
    (20)

    where

    $$\begin{aligned} c_{X}^{\mathrm {e}}=\sigma ^{2}\left\{ \sum \limits _{i=1}^{\infty }[\sigma ^{2}]^{i}/i!\right\} ^{-1}. \end{aligned}$$
    (21)

    It is clear that \(0<c_{X}^{\mathrm {e}}<1\). Theorem 1 is proved. \(\square \)

Proof of Lemma 2

Note that \(\zeta _{t}=\sum \limits _{i=1}^{\infty }a_{i}\epsilon _{t-i}\) so that \(var(\zeta _{t})=\sigma _{\epsilon }^{2} \sum \limits _{i=1}^{\infty }a_{i}^{2}\) and \(cov(\zeta _{,}\zeta _{t+k} )=\sigma _{\epsilon }^{2}\sum \limits _{i=1}^{\infty }a_{i}a_{i+k}\). This leads to

$$\begin{aligned} \rho _{\zeta }(k)=\left[ \sum \limits _{i=1}^{\infty }a_{i}a_{i+k}\right] \left[ \sum \limits _{i=1}^{\infty }a_{i}^{2}\right] ^{-1}. \end{aligned}$$
(22)

Furthermore,

$$\begin{aligned} \rho _{\zeta }(k)&=\left[ \sum \limits _{i=0}^{\infty }a_{i}a_{i+k} -a_{k}\right] \left[ \sum \limits _{i=0}^{\infty }a_{i}^{2}-1\right] ^{-1}\\&=\frac{\sum \limits _{i=0}^{\infty }a_{i}a_{i+k}}{\sum \limits _{i=0}^{\infty }a_{i}^{2}}\frac{\sum \limits _{i=0}^{\infty }a_{i}^{2}}{\sum \limits _{i=1} ^{\infty }a_{i}^{2}}-\frac{a_{k}}{\sum \limits _{i=1}^{\infty }a_{i}^{2}}\\&=\rho _{Z}(k)c_{\rho }^{\lambda }[1+o(1)], \end{aligned}$$

because \(a_{k}=o[\rho _{Z}(k)]\) for \(d>0\), where \(c_{\rho }^{\lambda } =\frac{\sum _{i=0}^{\infty }a_{i}^{2}}{\sum _{i=1}^{\infty }a_{i}^{2} }=\frac{\sigma ^{2}}{\sigma _{\lambda }^{2}}>1\) is as defined in Lemma 2. This completes the proof of Lemma 2. \(\square \)

A sketched proof of Corollary 2 As in the proof of Theorem 1, straightforward calculation leads to the formulas of \(\rho _{\lambda }(k)\) in (i). Furthermore, following the proof of Theorem 1 (iv), we can obtaine \(\tilde{c}_{\rho }^{\mathrm {e}}=\sigma _{\lambda }^{2}\left\{ \sum \limits _{i=1}^{\infty }[\sigma _{\lambda }^{2}]^{i}/i!\right\} ^{-1}\), which is also a constant between zero and one. Detailed calculation are omitted to save space.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beran, J., Feng, Y. & Ghosh, S. Modelling long-range dependence and trends in duration series: an approach based on EFARIMA and ESEMIFAR models. Stat Papers 56, 431–451 (2015). https://doi.org/10.1007/s00362-014-0590-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-014-0590-x

Keywords

Navigation