Skip to main content
Log in

Bayesian and Robust Bayesian analysis under a general class of balanced loss functions

  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

For estimating an unknown parameter θ, we introduce and motivate the use of balanced loss functions of the form \({L_{\rho, \omega, \delta_0}(\theta, \delta)=\omega \rho(\delta_0, \delta)+ (1-\omega) \rho(\theta, \delta)}\), as well as the weighted version \({q(\theta) L_{\rho, \omega, \delta_0}(\theta, \delta)}\), where ρ(θ, δ) is an arbitrary loss function, δ 0 is a chosen a priori “target” estimator of \({\theta, \omega \in[0,1)}\), and q(·) is a positive weight function. we develop Bayesian estimators under \({L_{\rho, \omega, \delta_0}}\) with ω > 0 by relating such estimators to Bayesian solutions under \({L_{\rho, \omega, \delta_0}}\) with ω = 0. Illustrations are given for various choices of ρ, such as absolute value, entropy, linex, and squared error type losses. Finally, under various robust Bayesian analysis criteria including posterior regret gamma-minimaxity, conditional gamma-minimaxity, and most stable, we establish explicit connections between optimal actions derived under balanced and unbalanced losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmadi J, Jafari Jozani M, Marchand É, Parsian A (2009a) Bayes estimation based on k-record data from a general class of distributions under balanced type loss functions. J Stat Plan Inference 139: 1180–1189

    Article  MathSciNet  MATH  Google Scholar 

  • Ahmadi J, Jafari Jozani M, Marchand É, Parsian A (2009b) Prediction of k-records from a general class of distributions under balanced type loss functions. Metrika 70: 19–33

    Article  MathSciNet  Google Scholar 

  • Bansal AK, Aggarwal P (2007) Bayes prediction for a heteroscedastic regression super-population model using balanced loss function. Commun Stat 36: 1565–1575

    Article  MathSciNet  MATH  Google Scholar 

  • Berger JO (1985) Statistical decision theory and Bayesian analysis. Springer-Verlag, New York

    MATH  Google Scholar 

  • Berger JO (1994) An overview of Robust Bayesian analysis. Test 3: 5–124

    Article  MathSciNet  MATH  Google Scholar 

  • Betro B, Ruggeri F (1992) Conditional Γ-minimax actions under convex losses. Commun Stat 21: 1051–1066

    Article  MathSciNet  MATH  Google Scholar 

  • Boratyńska A (1997) Stability of Bayesian inference in exponential families. Stat Probab Lett 36: 173–178

    Article  MATH  Google Scholar 

  • DasGupta A, Studden W (1991) Robust Bayesian experimental designs in normal linear models. Ann Stat 19: 1244–1256

    Article  MathSciNet  MATH  Google Scholar 

  • Dey D, Ghosh M, Strawderman WE (1999) On estimation with balanced loss functions. Stat Probab Lett 45: 97–101

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh M, Kim MJ, Kim D (2007) Constrained Bayes and empirical Bayes estimation with balanced loss function. Commun Stat 36: 1527–1535

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh M, Kim MJ, Kim D (2008) Constrained Bayes and empirical Bayes estimation under random effects normal ANOVA model with balanced loss function. J Stat Plan Inference 8: 2017–2028

    MathSciNet  Google Scholar 

  • Gómez-Déniz E (2008) A generalization of the credibility theory obtained by using the weighted balanced loss function. Insur Math Econ 42: 850–854

    Article  MATH  Google Scholar 

  • Heilmann W (1989) Decision theoretic foundations of credibility theory. Insur Math Econ 8: 77–95

    Article  MathSciNet  MATH  Google Scholar 

  • Jafari Jozani M, Parsian A (2008) Posterior regret Γ-minimax estimation and prediction based on k-record data under entropy loss function. Commun Stat 37(14): 2202–2212

    Article  MathSciNet  MATH  Google Scholar 

  • Jafari Jozani M, Marchand É, Parsian A (2006) On estimation with weighted balanced-type loss function. Stat Probab Lett 76: 773–780

    Article  MathSciNet  MATH  Google Scholar 

  • Marchand É, Strawderman WE (2004) Estimation in restricted parameter spaces: a review. A Festschrift for Herman Rubin, IMS Lecture Notes-Monograph Series, vol 45. Institute of Mathematical Statistics, Hayward, California, pp 21–44

  • Meczarski M (1993) Stability and conditional Γ-minimaxity in Bayesian inference. Appl Math 22: 117–122

    MathSciNet  MATH  Google Scholar 

  • Meczarski M, Zielinski R (1991) Stability of Bayesian estimator of the Poisson mean under the inexactly specified Gamma prior. Stat Probab Lett 12: 329–333

    Article  MathSciNet  Google Scholar 

  • Parsian A, Kirmani SNUA (2002) Estimation under LINEX loss function. Handbook of applied econometrics and statistical inference, Statistics textbooks monographs. Marcel Dekker Inc., pp 53–76

  • Rios Insua D, Ruggeri F (2000) Robust Bayesian analysis. Lecture notes in statistics. Springer-Verlag, New York

  • Rios Insua D, Ruggeri F, Vidakovic B (1995) Some results on posterior regret Γ-minimax estimation. Stat Decis 13: 315–351

    MathSciNet  MATH  Google Scholar 

  • Rodrigues J, Zellner A (1994) Weighted balanced loss function and estimation of the mean time to failure. Commun Stat 23: 3609–3616

    Article  MathSciNet  MATH  Google Scholar 

  • Toutenburg H, Shalab (2005) Estimation of regression coefficients subject to exact linear restrictions when some observations are missing and quadratic error balanced loss function is used. Test 14: 385–396

    Article  MathSciNet  MATH  Google Scholar 

  • Wolfe PJ, Godsill SJ (2003) A perceptually balanced loss function for short-time spectral amplitude estimation. Proc IEEE Conf 5: 425–428

    Google Scholar 

  • Zellner A (1986) Bayesian estimation and prediction using asymmetric loss functions. J Am Stat Assoc 81: 446–545

    Article  MathSciNet  MATH  Google Scholar 

  • Zellner A (1994) Bayesian and Non-Bayesian estimation using balanced loss functions. In: Berger JO, Gupta SS (eds) Statistical decision theory and methods, vol V. Springer-Verlag, New York, pp 337–390

    Google Scholar 

  • Zen M, DasGupta A (1993) Estimating a binomial parameter: is robust Bayes real Bayes?. Stat Decis 11: 37–60

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Jafari Jozani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafari Jozani, M., Marchand, É. & Parsian, A. Bayesian and Robust Bayesian analysis under a general class of balanced loss functions. Stat Papers 53, 51–60 (2012). https://doi.org/10.1007/s00362-010-0307-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-010-0307-8

Keywords

Mathematics Subject Classification (2000)

Navigation