Skip to main content

Advertisement

Log in

Marshall–Olkin q-Weibull distribution and max–min processes

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new probability model known as Marshall–Olkin q-Weibull distribution. Various properties of the distribution and hazard rate functions are considered. The distribution is applied to model a biostatistical data. The corresponding time series models are developed to illustrate its application in times series modeling. We also develop different types of autoregressive processes with minification structure and max–min structure which can be applied to a rich variety of contexts in real life. Sample path properties are examined and generalization to higher orders are also made. The model is applied to a time series data on daily discharge of Neyyar river in Kerala, India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alice T, Jose KK (2002) Multivariate minification processes. STARS Int J 3: 1–9

    Google Scholar 

  • Alice T, Jose KK (2003) Marshall–Olkin pareto processes. Far East J Theor Stat 9: 117–132

    MATH  MathSciNet  Google Scholar 

  • Alice T, Jose KK (2004) Bivariate semi-Pareto minification processes. Metrika 59: 305–313

    Article  MATH  MathSciNet  Google Scholar 

  • Alice T, Jose KK (2005) Marshall–Olkin semi-Weibull minification processes. Recent Adv Stat Theory Appl I: 6–17

    Google Scholar 

  • Arnold BC, Robertson CA (1989) Autoregressive logistic processes. J Appl Prob 26: 524–531

    Article  MATH  MathSciNet  Google Scholar 

  • Barlow RE, Proschan F (1981) Statistical theory of reliability and life testing. Holt, Rinechart and Winston Inc., New York, USA

  • Beck C (2006) Stretched exponentials from superstatistics. Phys A 365: 96–101

    Article  Google Scholar 

  • Beck C, Cohen ECD (2003) Superstatistics. Phys A 322: 267–275

    Article  MATH  MathSciNet  Google Scholar 

  • Brown BG, Katz RW, Murphy AH (1984) Time series models to simulate and forecast wind speed and wind power. J Clim Appl Meteorol 23: 1184–1195

    Article  Google Scholar 

  • Costa UMS, Freire VN, Malacarne LC, Mendes RS, Picoli S  Jr, Vasconcelos EA, da Silva EF  Jr (2006) An improved description of the dielectric breakdown in oxides based on a generalized Weibull distribution. Phys A 361: 209–215

    Article  Google Scholar 

  • Gaver DP, Lewis PAW (1980) First order autoregressive gamma sequences and point processes. Adv Appl Pro 12: 727–745

    Article  MATH  MathSciNet  Google Scholar 

  • Ghitany ME, Al-Hussaini EK, Al-Jarallah RA (2005) Marshall–Olkin extended Weibull distribution and its application to censored Data. J Appl Stat 32: 1025–1034

    Article  MATH  MathSciNet  Google Scholar 

  • Jose KK, Alice T (2001) Marshall–Olkin generalized-Weibull distributions and applications. STARS Int J 2(1): 1–8

    Google Scholar 

  • Lee ET, Wang JW (2003) Statistical methods for survival data analysis, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  • Lewis PAW, McKenzie E (1991) Minification processes and their transformations. J Appl Prob 28: 45–57

    Article  MATH  MathSciNet  Google Scholar 

  • Marshall AW, Olkin I (1997) A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrica 84: 641–652

    Article  MATH  MathSciNet  Google Scholar 

  • Mathai AM (2005) A pathway to matrix-variate gamma and normal densities. Linear Algebra Appl 396: 317–328

    Article  MATH  MathSciNet  Google Scholar 

  • Mathai AM, Provost SB (2006) On q-logistic and related distributions. IEEE Trans Reliab 55(2): 237–244

    Article  MathSciNet  Google Scholar 

  • Picoli S  Jr, Mendes RS, Malacarne LC (2003) q-exponential, Weibull and q-Weibull distributions: an empirical analysis. Phys A 324: 678–688

    Article  MATH  MathSciNet  Google Scholar 

  • Sim CH (1986) Simulation of Weibull and gamma autoregressive stationary process. Commun Stat Simul Comput B 15: 1141–1146

    Article  MATH  MathSciNet  Google Scholar 

  • Tavares LV (1977) The exact distribution of extremes of a non-Gaussian process. Stoch Proc Appl 5: 151–156

    Article  MATH  MathSciNet  Google Scholar 

  • Tavares LV (1980) An exponential Markovian stationary process. J Appl Prob 17: 1117–1120

    Article  MATH  MathSciNet  Google Scholar 

  • Tsallis C (1988) Possible generalizations of Boltzmann-Gibbs statistics. J Stat Phys 52: 479–487

    Article  MATH  MathSciNet  Google Scholar 

  • Wilk G, Wlodarczyk Z (2000) Interpretation of the non-extensivity parameter q in some applications of Tsallis statistics and Lévy distributions. Phys Rev Lett 84: 2770–2773

    Article  Google Scholar 

  • Wilk G, Wlodarczyk Z (2001) Non-exponential decays and non-extensivity. Phys A 290: 55–58

    MATH  Google Scholar 

  • Yeh HC, Arnold BC, Robertson CA (1988) Pareto processes. J Appl Prob 25: 291–301

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Jose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jose, K.K., Naik, S.R. & Ristić, M.M. Marshall–Olkin q-Weibull distribution and max–min processes. Stat Papers 51, 837–851 (2010). https://doi.org/10.1007/s00362-008-0173-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-008-0173-9

Keywords

Mathematics Subject Classification (2000)

Navigation