Skip to main content

Advertisement

Log in

Mitochondrial respiration in rats during hypothermia resulting from central drug administration

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The ability to induce a hypothermia resembling that of natural torpor would be greatly beneficial in medical and non-medical fields. At present, two procedures based on central nervous pharmacological manipulation have been shown to be effective in bringing core body temperature well below 30 °C in the rat, a non-hibernator: the first, based on the inhibition of a key relay in the central thermoregulatory pathway, the other, based on the activation of central adenosine A1 receptors. Although the role of mitochondria in the activation and maintenance of torpor has been extensively studied, no data are available for centrally induced hypothermia in non-hibernators. Thus, in the present work the respiration rate of mitochondria in the liver and in the kidney of rats following the aforementioned hypothermia-inducing treatments was studied. Moreover, to have an internal control, the same parameters were assessed in a well-consolidated model, i.e., mice during fasting-induced torpor. Our results show that state 3 respiration rate, which significantly decreased in the liver of mice, was unchanged in rats. An increase of state 4 respiration rate was observed in both species, although it was not statistically significant in rats under central adenosine stimulation. Also, a significant decrease of the respiratory control ratio was detected in both species. Finally, no effects were detected in kidney mitochondria in both species. Overall, in these hypothermic conditions liver mitochondria of rats remained active and apparently ready to be re-activated to produce energy and warm up the cells. These findings can be interpreted as encouraging in view of the finalization of a translational approach to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baracca A, Barzanti V, Lenaz G, Solaini G (1994) Dietary lipids and 5′-nucleotidase activity of rat cell plasma membranes. Biochem Biophys Res Commun 199:99–105

    Article  CAS  PubMed  Google Scholar 

  • Barbato S, Sgarbi G, Gorini G, Baracca A, Solaini G (2015) The inhibitor protein (IF1) of the F1F0-ATPase modulates human osteosarcoma cell bioenergetics. J Biol Chem 290:6338–6348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barger JL, Brand MD, Barnes BM, Boyer BB (2003) Tissue-specific depression of mitochondrial proton leak and substrate oxidation in hibernating arctic ground squirrels. Am J Physiol Regul Integr Comp Physiol 284:R1306-1313

    Article  CAS  PubMed  Google Scholar 

  • Barogi S, Baracca A, Parenti Castelli G, Bovina C, Formiggini G, Marchetti M, Solaini G, Lenaz G (1995) Lack of major changes in ATPase activity in mitochondria from liver, heart, and skeletal muscle of rats upon ageing. Mech Ageing Dev 84:139–150

    Article  CAS  PubMed  Google Scholar 

  • Blessing WW, Nalivaiko E (2001) Raphe magnus/pallidus neurons regulate tail but not mesenteric arterial blood flow in rats. Neuroscience 105:923–929

    Article  CAS  PubMed  Google Scholar 

  • Bosetti F, Baracca A, Lenaz G, Solaini G (2004) Increased state 4 mitochondrial respiration and swelling in early post-ischemic reperfusion of rat heart. FEBS Lett 563:161–164

    Article  CAS  PubMed  Google Scholar 

  • Bouma HR, Verhaag EM, Otis JP, Heldmaier G, Swoap SJ, Strijkstra AM, Henning RH, Carey HV (2012) Induction of torpor: mimicking natural metabolic suppression for biomedical applications. J Cell Physiol 227:1285–1290

    Article  CAS  PubMed  Google Scholar 

  • Brown JC, Staples JF (2010) Mitochondrial metabolism during fasting-induced daily torpor in mice. Biochim Biophys Acta 1797:476–486

    Article  CAS  PubMed  Google Scholar 

  • Brown JC, Gerson AR, Staples JF (2007) Mitochondrial metabolism during daily torpor in the dwarf Siberian hamster: role of active regulated changes and passive thermal effects. Am J Physiol Regul Integr Comp Physiol 293:R1833–R1845

    Article  CAS  PubMed  Google Scholar 

  • Cerri M (2017) The central control of energy expenditure: exploiting torpor for medical applications. Annu Rev Physiol 79:167–186

    Article  CAS  PubMed  Google Scholar 

  • Cerri M, Zamboni G, Tupone D, Dentico D, Luppi M, Martelli D, Perez E, Amici R (2010) Cutaneous vasodilation elicited by disinhibition of the caudal portion of the rostral ventromedial medulla of the free-behaving rat. Neuroscience 165:984–995

    Article  CAS  PubMed  Google Scholar 

  • Cerri M, Mastrotto M, Tupone D, Martelli D, Luppi M, Perez E, Zamboni G, Amici R (2013) The inhibition of neurons in the central nervous pathways for thermoregulatory cold defense induces a suspended animation state in the rat. J Neurosci 33:2984–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerri M, Tinganelli W, Negrini M, Helm A, Scifoni E, Tommasino F, Sioli M, Zoccoli A, Durante M (2016) Hibernation for space travel: impact on radioprotection. Life Sci Space Res 11:1–9

    Article  Google Scholar 

  • Cerri M, Hitrec T, Luppi M, Amici R (2021) Be cool to be far: exploiting hibernation for space exploration. Neurosci Biobehav Rev 128:218–232

    Article  PubMed  Google Scholar 

  • Chouker A, Bereiter-Hahn J, Singer D, Heldmaier G (2019) Hibernating astronauts-science or fiction? Pflugers Arch 471:819–828

    Article  CAS  PubMed  Google Scholar 

  • De Rosa S, Antonelli M, Ronco C (2017) Hypothermia and kidney: a focus on ischaemia-reperfusion injury. Nephrol Dial Transplant 32:241–247

    PubMed  Google Scholar 

  • Fedotcheva NJ, Sharyshev AA, Mironova GD, Kondrashova MN (1985) Inhibition of succinate oxidation and K+ transport in mitochondria during hibernation. Comp Biochem Physiol B 82:191–195

    Article  CAS  PubMed  Google Scholar 

  • Gehnrich SC, Aprille JR (1988) Hepatic gluconeogenesis and mitochondrial function during hibernation. Comp Biochem Physiol B 91:11–16

    Article  CAS  PubMed  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    Article  CAS  PubMed  Google Scholar 

  • Gorr TA (2017) Hypometabolism as the ultimate defence in stress response: how the comparative approach helps understanding of medically relevant questions. Acta Physiol (oxf) 219:409–440

    Article  CAS  Google Scholar 

  • Griko Y, Regan MD (2018) Synthetic torpor: a method for safely and practically transporting experimental animals aboard spaceflight missions to deep space. Life Sci Space Res (amst) 16:101–107

    Article  Google Scholar 

  • Grimpo K, Kutschke M, Kastl A, Meyer CW, Heldmaier G, Exner C, Jastroch M (2014) Metabolic depression during warm torpor in the Golden spiny mouse (Acomys russatus) does not affect mitochondrial respiration and hydrogen peroxide release. Comp Biochem Physiol A Mol Integr Physiol 167:7–14

    Article  CAS  PubMed  Google Scholar 

  • Heim AB, Chung D, Florant GL, Chicco AJ (2017) Tissue-specific seasonal changes in mitochondrial function of a mammalian hibernator. Am J Physiol Regul Integr Comp Physiol 313:R180–R190

    Article  PubMed  Google Scholar 

  • Heldmaier G, Ortmann S, Elvert R (2004) Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol 141:317–329

    Article  PubMed  Google Scholar 

  • Hendriks KDW, Lupi E, Hardenberg MC, Hoogstra-Berends F, Deelman LE, Henning RH (2017) Differences in mitochondrial function and morphology during cooling and rewarming between hibernator and non-hibernator derived kidney epithelial cells. Sci Rep 7:15482

    Article  PubMed  PubMed Central  Google Scholar 

  • Hitrec T, Luppi M, Bastianini S, Squarcio F, Berteotti C, Lo Martire V, Martelli D, Occhinegro A, Tupone D, Zoccoli G, Amici R, Cerri M (2019) Neural control of fasting-induced torpor in mice. Sci Rep 9:15462

    Article  PubMed  PubMed Central  Google Scholar 

  • Hitrec T, Squarcio F, Cerri M, Martelli D, Occhinegro A, Piscitiello E, Tupone D, Amici R, Luppi M (2021) Reversible tau phosphorylation induced by synthetic torpor in the spinal cord of the rat. Front Neuroanat 15:592288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hrvatin S, Sun S, Wilcox OF, Yao H, Lavin-Peter AJ, Cicconet M, Assad EG, Palmer ME, Aronson S, Banks AS, Griffith EC, Greenberg ME (2020) Neurons that regulate mouse torpor. Nature 583:115–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klingenberg M, Winkler E (1985) The reconstituted isolated uncoupling protein is a membrane potential driven H+ translocator. EMBO J 4:3087–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutschke M, Grimpo K, Kastl A, Schneider S, Heldmaier G, Exner C, Jastroch M (2013) Depression of mitochondrial respiration during daily torpor of the Djungarian hamster, Phodopus sungorus, is specific for liver and correlates with body temperature. Comp Biochem Physiol A Mol Integr Physiol 164:584–589

    Article  CAS  PubMed  Google Scholar 

  • Leducq N, Delmas-Beauvieux MC, Bourdel-Marchasson I, Dufour S, Gallis JL, Canioni P, Diolez P (1998) Mitochondrial permeability transition during hypothermic to normothermic reperfusion in rat liver demonstrated by the protective effect of cyclosporin A. Biochem J 336(Pt 2):501–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CC (2008) Is human hibernation possible? Annu Rev Med 59:177–186

    Article  CAS  PubMed  Google Scholar 

  • Luppi M, Hitrec T, Di Cristoforo A, Squarcio F, Stanzani A, Occhinegro A, Chiavetta P, Tupone D, Zamboni G, Amici R, Cerri M (2019) Phosphorylation and dephosphorylation of tau protein during synthetic torpor. Front Neuroanat 13:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin AW, Fuhrman FA (1955) The relationship between summated tissue respiration and metabolic rate in the mouse and dog. Physiol Zool 28:18–34

    Article  Google Scholar 

  • Martin SL, Maniero GD, Carey C, Hand SC (1999) Reversible depression of oxygen consumption in isolated liver mitochondria during hibernation. Physiol Biochem Zool 72:255–264

    Article  CAS  PubMed  Google Scholar 

  • Morrison SF, Madden CJ, Tupone D (2014) Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab 19:741–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muleme HM, Walpole AC, Staples JF (2006) Mitochondrial metabolism in hibernation: metabolic suppression, temperature effects, and substrate preferences. Physiol Biochem Zool 79:474–483

    Article  CAS  PubMed  Google Scholar 

  • Nath S (2016) The thermodynamic efficiency of ATP synthesis in oxidative phosphorylation. Biophys Chem 219:69–74

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Elsevier, San Diego

    Google Scholar 

  • Pehowich DJ, Wang LCH (1984) Seasonal changes in mitochondrial succinate dehydrogenase activity in a hibernator, Spermophilus richardsonii. J Comp Physiol B 154:495–501

    Article  CAS  Google Scholar 

  • Puspitasari A, Cerri M, Takahashi A, Yoshida Y, Hanamura K, Tinganelli W (2021) Hibernation as a tool for radiation protection in space exploration. Life (basel) 11:54

    CAS  Google Scholar 

  • Rolfe DF, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77:731–758

    Article  CAS  PubMed  Google Scholar 

  • Solaini G, Baracca A, Gabellieri E, Lenaz G (1997) Modification of the mitochondrial F1-ATPase epsilon subunit, enhancement of the ATPase activity of the IF1-F1 complex and IF1-binding dependence of the conformation of the epsilon subunit. Biochem J 327(Pt 2):443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solaini G, Harris DA, Lenaz G, Sgarbi G, Baracca A (2008) The study of the pathogenic mechanism of mitochondrial diseases provides information on basic bioenergetics. Biochim Biophys Acta 1777:941–945

    Article  CAS  PubMed  Google Scholar 

  • Staples JF (2014) Metabolic suppression in mammalian hibernation: the role of mitochondria. J Exp Biol 217:2032–2036

    Article  CAS  PubMed  Google Scholar 

  • Staples JF, Brown JC (2008) Mitochondrial metabolism in hibernation and daily torpor: a review. J Comp Physiol B 178:811–827

    Article  CAS  PubMed  Google Scholar 

  • Susantitaphong P, Alfayez M, Cohen-Bucay A, Balk EM, Jaber BL (2012) Therapeutic hypothermia and prevention of acute kidney injury: a meta-analysis of randomized controlled trials. Resuscitation 83:159–167

    Article  PubMed  Google Scholar 

  • Takahashi TM, Sunagawa GA, Soya S, Abe M, Sakurai K, Ishikawa K, Yanagisawa M, Hama H, Hasegawa E, Miyawaki A, Sakimura K, Takahashi M, Sakurai T (2020) A discrete neuronal circuit induces a hibernation-like state in rodents. Nature 583:109–114

    Article  CAS  PubMed  Google Scholar 

  • Takaki M, Nakahara H, Kawatani Y, Utsumi K, Suga H (1997) No suppression of respiratory function of mitochondrial isolated from the hearts of anesthetized rats with high-dose pentobarbital sodium. Jpn J Physiol 47:87–92

    Article  CAS  PubMed  Google Scholar 

  • Tinganelli W, Hitrec T, Romani F, Simoniello P, Squarcio F, Stanzani A, Piscitiello E, Marchesano V, Luppi M, Sioli M, Helm A, Compagnone G, Morganti AG, Amici R, Negrini M, Zoccoli A, Durante M, Cerri M (2019) Hibernation and radioprotection: gene expression in the liver and testicle of rats irradiated under synthetic torpor. Int J Mol Sci 20:352

    Article  PubMed Central  Google Scholar 

  • Tupone D, Madden CJ, Morrison SF (2013) Central activation of the A1 adenosine receptor (A1AR) induces a hypothermic, torpor-like state in the rat. J Neurosci 33:14512–14525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Dam K, Westerhoff HV, Krab K, van der Meer R, Arents JC (1980) Relationship between chemiosomotic flows and thermodynamic forces in oxidative phosphorylation. Biochim Biophys Acta 591:240–250

    Article  PubMed  Google Scholar 

  • Vicent MA, Borre ED, Swoap SJ (2017) Central activation of the A1 adenosine receptor in fed mice recapitulates only some of the attributes of daily torpor. J Comp Physiol B 187:835–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zhang J, Ying Z, Heymsfield SB (2012) Organ-tissue level model of resting energy expenditure across mammals: new insights into Kleiber’s Law. ISRN Zool 2012:673050

    Article  Google Scholar 

  • Watt IN, Montgomery MG, Runswick MJ, Leslie AG, Walker JE (2010) Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc Natl Acad Sci USA 107:16823–16827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wikstrom M, Springett R (2020) Thermodynamic efficiency, reversibility, and degree of coupling in energy conservation by the mitochondrial respiratory chain. Commun Biol 3:451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaretsky DV, Zaretskaia MV, DiMicco JA (2003) Stimulation and blockade of GABA(A) receptors in the raphe pallidus: effects on body temperature, heart rate, and blood pressure in conscious rats. Am J Physiol Regul Integr Comp Physiol 285:R110–R116

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Reis F, He Y, Park JW, DiVittorio JR, Sivakumar N, van Veen JE, Maesta-Pereira S, Shum M, Nichols I, Massa MG, Anderson S, Paul K, Liesa M, Ajijola OA, Xu Y, Adhikari A, Correa SM (2020) Estrogen-sensitive medial preoptic area neurons coordinate torpor in mice. Nat Commun 11:6378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The experiments were funded by the project FARB—Warm up to wake up—from the University of Bologna.

Author information

Authors and Affiliations

Authors

Contributions

TH and GSg share first authorship of this publication. Experiment ideation: RA, MC, GZ. Experimental plan design: RA, AB, MC, TH, GSg, GSo, GZ. Surgery: AC, TH. Microinjection in rats: AC, TH, FS. Fasting-induced torpor in mice: AC, TH, FS. Sample collection: MC, TH, ML. Measurement of mitochondrial function: FL, GSg. Mitochondrial data analysis: GSg. Temperature data analysis: TH. Analysis of the results: RA, AB, MC, AC, TH, FL, ML, GSg, GSo, FS, GZ. Interpretation of the findings: RA, AB, MC, TH, GSg, GSo. Manuscript writing: RA, AB, MC, TH, GSg, GSo. Manuscript editing: RA, AB, MC, TH, GSg, GSo, GZ.

Corresponding author

Correspondence to Matteo Cerri.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Communicated by G. Heldmaier.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sgarbi, G., Hitrec, T., Amici, R. et al. Mitochondrial respiration in rats during hypothermia resulting from central drug administration. J Comp Physiol B 192, 349–360 (2022). https://doi.org/10.1007/s00360-021-01421-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-021-01421-6

Keywords

Navigation