Skip to main content
Log in

Sex-specific thermal sensitivities of performance and activity in the asian house gecko, Hemidactylus frenatus

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Studies of sexual selection primarily focus on morphological traits such as body size and secondary trait dimorphism, with less attention been given to the functional differences between the sexes and even more so their thermal performance capacities. Each sex may benefit from possessing different thermal performance capacities that would allow them to maximise their fitness relative to their different reproductive roles; especially when performances are closely related to reproductive success. Here, we examine sexual divergence in thermal sensitivities of performance across three populations of the Asian house gecko (Hemidactylus frenatus) over an extensive latitudinal cline. Using analyses of the thermal sensitivity of routine activity, bite force and sprint speed, we explored whether: (i) males and females differed in their optimal temperatures for performance, (ii) the sexes differed in their thermal sensitivities of performance, and (iii) the degree of sexual divergence in thermal sensitivity varied among the populations. Because male H. frenatus are highly aggressive and frequently engage in combat to gain territories and mating opportunities, we expected males would be active over a wider range of temperatures than females and this would favour broad thermal sensitivity curves for males. In addition, we expected a greater divergence between the sexes in thermal sensitivities for the temperate populations that experience greater daily and seasonal thermal variation. We found that males were more active, and had greater bite forces and faster sprint speeds than females, independent of body size. In addition, we found differences between the sexes in thermal sensitivities for the tropical population; female H. frenatus were less active and possessed lower sprint speeds at higher temperatures than males. Although H. frenatus from the most variable thermal environments also displayed the broadest thermal performance range, it was the more stable tropical population that exhibited the greatest divergence between the sexes in thermal sensitivity of performance. The divergence in thermal physiology that we detected between the sexes of H. frenatus is consistent with the idea that males will derive mating and territorial advantages for maintaining function over a broader range of temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adolf AC, Porter WP (1993) Temperature, activity and lizard life history. Am Nat 142:273–295

    Article  Google Scholar 

  • Alonso JC, Salgado I, Palacín C (2015) Thermal tolerance may cause sexual segregation in sexually dimorphic species living in hot environments. Behav Ecol 23:1296–1307

    Article  Google Scholar 

  • Anderson RA, Karasov WH (1988) Energetics of the lizard Cnemidophorus tigris and life-history consequences of food-acuisition mode. Ecol Monogr 58:79–110

    Article  Google Scholar 

  • Anderson RA, McBrayer LD, Herrel A (2008) Bite force in vertebrates: opportunities and caveats for use of a nonpareil whole-animal performance measure. Biol J Linnean Soc 93:709–720

    Article  Google Scholar 

  • Andersson M (1994) Sexual selection. Princeton University Press, Princeton

    Google Scholar 

  • Angilletta MJ (2009) Thermal adaptation: a theroretical and empirical synthesis. Oxford University Press, New York

    Book  Google Scholar 

  • Angilletta MJ, Montgomery LG, Werner YL (1999) Temperature refernce in geckos: diel variation in juveniles and adults. Herpetologica 55:212–222

    Google Scholar 

  • Angilletta MJ, Niewiarowski PH, Navas CA (2002) The evolution of thermal physiology in ectotherms. J Therm Biol 27:249–268

    Article  Google Scholar 

  • Arnold SJ (1983) Morphology, performance and fitness. Amer Zool 23:347–361

    Article  Google Scholar 

  • Artacho P, Jouanneau I, Le Galliard JF (2013) Interindividual variation in thermal sensitivity of maximal sprint speed, thermal behavior, and resting metabolic tate in a lizard. Physiol Biochem Zool 86:458–469

    Article  PubMed  Google Scholar 

  • Asbury DA, Adolph SC (2007) Behavioural plasticity in an ecological generalist: microhabitat use by western fence lizards. Evol Ecol Res 9:801–815

    Google Scholar 

  • Autumn K, Weinstein RB, Full RJ (1994) Low cost of locomotion increases perormace at low temperature in nocturnal lizard. Physiol Zool 67:238–262

    Article  Google Scholar 

  • Autumn K. Farley CT, Emshwiller M, Full RJ (1997) Low cost locomotin in the Banded Gecko: a test of the nocturnality hypothesis. Physiol Zool 70:660–669

    Article  PubMed  CAS  Google Scholar 

  • Bates D, Maechler M, Bolker B (2011) lme4: linear mixed-effects models using Eigen and S4. R package version 1.0-5.3

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Cameron SF, Wynn ML, Wilson RS (2013) Sex-specific trade-offs and compensatory mechanisms: bite force and sprint speed pose conflicting demands on the design of geckos (Hemidactylus frenatus). J Exp Biol 216:3781–3789

    Article  PubMed  CAS  Google Scholar 

  • Cheng HY, Lin JI (1977) Comparative reproductive-biology of lizards, Japalura swinhonis formosensis, Takydromus septentrionalis and Hemidactylus frenatus in Taiwan. 1. Male reproductive-cycle. Bull Inst Zool Acad Sin 16:107–121

    Google Scholar 

  • Church G (1962) The reproductive cycles of the Javanese house geckos, Cosymnotus platyurus, Hemidactylus frenatus, and Peropus mutilatus. Copeia 1962:262–269

  • Condon C, Cooper BS, Yeaman S, Angilletta MJ (2014) Temporal variation favors the evolution of generalists in experimental populations of Drosophila melanogaster. Evolution 68–3:720–728

    Article  Google Scholar 

  • Cooper BS, Czarnoleski M, Angilletta MJ (2010) Acclimation of thermal physiology in natural populations of Drosophila melanogaster: a test of an optimality model. J Evol Biol 23:2346–2355

    Article  PubMed  CAS  Google Scholar 

  • Crowley SR, Pietruszka RD (1983) Aggressiveness and vocalization in the leopard lizard (Gambelia wislizenni): the influence of temperature. Anim Behav 31:1055–1060

    Article  Google Scholar 

  • Cullum AJ (1998) Sexual dimorphism in physiological performance of whiptail lizards (genus Cnemidophorus). Physiol Zool 71:541–552

    Article  PubMed  CAS  Google Scholar 

  • Frenkel C (2006) Hemidactylus frenatus (Squamata: Gekkonidae): call frequency, movement and condition of tail in Costa Rica. Rev Biol Trop 54:1125–1130

    Article  PubMed  Google Scholar 

  • Garland T, Losos JB (1994) Ecological morphology of locomotor performance in squamate reptiles. In: Wainwright PC, Reilly SM (eds), Ecological morphology: integrative organismal biology. Univeristy of Chicago Press, Chicago, pp 240–302

    Google Scholar 

  • Gilchrist GW (1995) Specialists and generalists in changing environments. 1. Fitness landscapes of thermal sensitivity. Am Nat 146:252–270

    Article  Google Scholar 

  • Gilchrist GW (1996) A quantitative genetic analysis of thermal sensitivity in the locomotor performance curve of Aphidius ervi. Evolution 50:1560–1572

    Article  PubMed  Google Scholar 

  • Herrel A, Aerts P, Fret J, de Vree F (1999) Morphology of the feeding system in agamid lizards: Ecological correlates. Anat Rec 254:496–507

    Article  PubMed  CAS  Google Scholar 

  • Herrel A, James RS, Van Damme R (2007a) Fight versus flight: physiological basis for temperature-dependent behavioral shifts in lizards. J Exp Biol 210:1762–1767

    Article  PubMed  CAS  Google Scholar 

  • Herrel A, McBrayer LD, Larson PM (2007b) Functional basis for sexual differences in bite force in the lizard Anolis carolinensis. Biol J Linnean Soc 91:111–119

    Article  Google Scholar 

  • Hitchcock MA, McBrayer LD (2006) Thermoregulation in nocturnal ectotherms: seasonal and intraspecific variation in the Mediterranean gecko (Hemidactylus turcicus). J Herpetol 40:185–195

    Article  Google Scholar 

  • Hoskin CJ (2011) The invasion and potential impact of the Asian House Gecko (Hemidactylus frenatus) in Australia. Austral Ecol 36:240–251

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Multcomp: simultaneous inference in general parametric models. R package version 1.3-1

  • Huey RB (1991) Physiological consequences of habitat selection. Am Nat 137:S91-S115

    Article  Google Scholar 

  • Huey RB, Kingsolver JG (1989) Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol 4:131–135

    Article  PubMed  CAS  Google Scholar 

  • Huey RB, Pianka ER (2007) Natural history miscellany—lizard thermal biology: do genders differ? Am Nat 170:473–478

    Article  PubMed  Google Scholar 

  • Huey RB, Stevenson RD (1979) Integrating thermal physiology and ecology of ectotherms: discussion of approaches. Am Zool 19:357–366

    Article  Google Scholar 

  • Huey RB, Niewiarowski PH, Kaufmann J, Herron JC (1989) Thermal biology of nocturnal ectotherms: is sprint performance of geckos maximal at low body temperatures. Physiol Zool 62:488–504

    Article  Google Scholar 

  • Irschick DJ, Garland T (2001) Integrating function and ecology in studies of adaptation: investigations of locomotor capacity as a model system. Annu Rev Ecol Syst 32:367–396

    Article  Google Scholar 

  • Irschick DJ, Le Galliard JF (2008) Studying the evolution of whole-organism performance capacity: sex, selection, and haiku—an introduction. Evol Ecol Res 10:155–156

    Google Scholar 

  • Izem R, Kingsolver JG (2005) Variation in continuous reaction norms: quantifying directions of biological interest. Am Nat 166:277–289

    Article  PubMed  Google Scholar 

  • Kaliontzopoulou A, Bandeira V, Carretero MA (2013) Sexual dimorphism in locomotor performance and its relation to morphology in wall lizards (Podarcis bocagei). J Zool 289:294–302

    Article  Google Scholar 

  • Kingsolver JG, Huey RB (2008) Size, temperature, and fitness: three rules. Evol Ecol Res 10:251–268

    Google Scholar 

  • Kuznetsova A, Brunn Brockhoff P, Christensen RHB (2013) lmerTest: test for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). R package version 2.0-3

  • Lailvaux SP (2007) Interactive effects of sex and temperature on locomotion in reptiles. Integr Comp Biol 47:189–199

    Article  PubMed  Google Scholar 

  • Lailvaux SP, Irschick DJ (2007) Effects of temperature and sex on jump performance and biomechanics in the lizard Anolis carolinensis. Funct Ecol 21:534–543

    Article  Google Scholar 

  • Lailvaux SP, Alexander GJ, Whiting MJ (2003) Sex-based differences and similarities in locomotor performance, thermal preferences, and escape behaviour in the lizard Platysaurus intermedius wilhelmi. Physiol Biochem Zool 76:511–521

    Article  PubMed  Google Scholar 

  • Lappin AK, Husak JF (2005) Weapon performance, not size, determines mating success and potential reproductive output in the collared lizard (Crotaphytus collaris). Am Nat 166:426–436

    Article  PubMed  Google Scholar 

  • Lees JJ, Nudds RL, Folkow LP, Stokkan KA, Codd JR (2012) Understanding sex differences in the cost of terrestrial locomotion. Proc R Soc B 279:826–832

    Article  PubMed  Google Scholar 

  • Lin JY, Cheng HY (1984) Ovarian cycle in the house gecko, Hemidactylus frenatus, in Taiwan with reference to food stress in winter. Bull Inst Zool Acad Sin 23:21–28

    Google Scholar 

  • Marcellini DL (1971) Activity patterns of gecko Hemidactylus frenatus. Copeia 1971:631–635

    Article  Google Scholar 

  • Marcellini DL (1974) Acoustic behaviour of the gekkonid lizard, Hemidactylus frenatus. Herpetologica 30:44–52

    Google Scholar 

  • Marcellini DL (1976) Some aspects of the thermal ecology of the gecko Hemidactylus frenatus. Herpetologica 32:341–345

    Google Scholar 

  • Marsh RL, Bennett AF (1989) Thermal dependence of sprint performance of the lizard Sceloporus occidentalis. J Exp Biol 126:79–86

    Google Scholar 

  • Ojanguren AF, Reyes-Gavilan FG, Brana F (2001) Thermal sensitivity of growth, food intake and activity of juvenile brown trout. J Therm Biol 26:165–170

    Article  PubMed  Google Scholar 

  • Ota H (1994) Female reproductive-cycles in the nothernmost populations of the 2 Gekkonid lizards, Hemidactylus frenatus and Lepidodactylus lugubris. Ecol Res 9:121–130

    Article  Google Scholar 

  • Oufiero CE, Garland T (2007) Evaluating performance costs of sexually selected traits. Func Ecol 21:676–689

    Article  Google Scholar 

  • Petren K, Bolger DT, Case TJ (1993) Mechanisms in the competitve success of an invading sexual gecko over an asexual native. Science 259:354–358

    Article  PubMed  CAS  Google Scholar 

  • Snell HL, Jennings RD, Snell HM, Harcourt S (1988) Intrapopulation variation in predator-avoidance performance of Galapagos lava lizards: the interaction of sexual and natural-selection. Evol Ecol 2:353–369

    Article  Google Scholar 

  • Stamps JA, Losos JB, Andrews RM (1997) A comparative study of population density and sexual size dimorphism in lizards. Am Nat 149:64–90

    Article  Google Scholar 

  • Tang XL, Yue F, He JZ, Wang NB, Ma M, Mo JR, Chen Q (2013) Ontogenetic and sexual differences of thermal biology and locomotor performance in a lacertid lizard, Eremias multiocellata. Zoology 116:331–335

    Article  PubMed  Google Scholar 

  • Van Damme R, Bauwens D, Castilla AM, Verheyen RF (1989) Altitudinal variation of the thermal biology and running performance in the lizard Podarcis tiliguerta. Oecol 80:516–524

    Article  Google Scholar 

  • Van Damme R, Entin P, Vanhooydonck B, Herrel A (2008) Causes of sexual dimorphism in performance traits: a comparative approach. Evol Ecol Res 10:229–250

    Google Scholar 

  • Vervust B, Brecko J, Herrel A (2011) Temperature effects on snapping performance in the common snapper Chelydra serpentina (Reptilia, Testudines). J Exp Zool Part A 315A:41–47

    Article  Google Scholar 

  • Wilson RS (2001) Geographic variation in thermal sensitivity of jumping performance in the frog Limnodynastes peronii. J Exp Biol 204:4227–4236

    PubMed  CAS  Google Scholar 

  • Wilson SK, Swan G (2008) A complete guide to reptiles of Australia. New Holland Publishers, Sydney

    Google Scholar 

  • Yu X, Peng Y, Aowphol A, Ding L, Brauth SE, Tang YZ (2011) Geographic variation in the advertisement calls of Gekko gecko in relation to variations in morphological features: implications for regional population differentiation. Ethol Ecol Evol 23:211–228

    Article  Google Scholar 

  • Zajitschek SRK, Zajitschek F, Miles DB, Clobert J (2012) The effect of coloration and temperature on sprint performance in male and female wall lizards. Biol J Linnean Soc 107:573–582

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

We thank G. David and T. Shuey for help with gecko collection. We also thank C. White and D. Booth and anonymous reviewers for valuable discussions and feedback. This work was supported by an Ecological Society of Australia Student Research Grant. All experiments were approved under the University of Queensland’s Animal Ethics Committee (AEC Approval Number-SBS/319/09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Skye F. Cameron.

Additional information

Communicated by I. D. Hume.

Appendix

Appendix

See Tables 5 and 6.

Table 5 Results from the planned contrasts for routine activity and the interaction between measurement temperatures (oC), population and sex
Table 6 Results from the planned contrasts for sprint speed and the interaction between measurement temperatures (oC), population and sex

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cameron, S.F., Wheatley, R. & Wilson, R.S. Sex-specific thermal sensitivities of performance and activity in the asian house gecko, Hemidactylus frenatus. J Comp Physiol B 188, 635–647 (2018). https://doi.org/10.1007/s00360-018-1149-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-018-1149-2

Keywords

Navigation