Skip to main content
Log in

Innate immunity and testosterone rapidly respond to acute stress, but is corticosterone at the helm?

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

When faced with a stressor, vertebrates can rapidly increase the secretion of glucocorticoids, which is thought to improve the chances of survival. Concurrent changes in other physiological systems, such as the reproductive endocrine or innate immune systems, have received less attention, particularly in wild vertebrates. It is often thought that glucocorticoids directly modulate immune performance during a stress response, but, in many species, androgens also rapidly respond to stress. However, to our knowledge, no study has simultaneously examined the interactions between the glucocorticoid, androgen, and innate immune responses to stress in a wild vertebrate. To address this issue, we tested the hypothesis that the change in plasma corticosterone (CORT) in response to the acute stress of capture and restraint is correlated with the concurrent changes in plasma testosterone (T) and innate immune performance (estimated by the capacity of plasma to agglutinate and lyse foreign cells) in the Abert’s Towhee (Melozone aberti). Furthermore, to broaden the generality of the findings, we compared male and female towhees, as well as males from urban and non-urban populations. Acute stress increased plasma CORT, decreased plasma T in males, and decreased innate immune performance, but the increase in CORT during stress was not correlated with the corresponding decreases in either plasma T or innate immunity. By contrast, the plasma T stress response was positively correlated with the innate immune stress response. Collectively, our results challenge the proposition that the glucocorticoid stress response is correlated with the concurrent changes in plasma T, a key reproductive hormone, and innate immunity, as estimated by agglutination and lysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Angelier F, Wingfield JC (2013) Importance of the glucocorticoid stress response in a changing world: theory, hypotheses and perspectives. Gen Comp Endocrinol 190:118–128

    Article  CAS  PubMed  Google Scholar 

  • Angelier F, Wingfield JC, Trouvé C, De Grissac S, Chastel O (2013) Modulation of the prolactin and the corticosterone stress responses: do they tell the same story in a long-lived bird, the Cape petrel? Gen Comp Endocrinol 182:7–15

    Article  CAS  PubMed  Google Scholar 

  • Atwell JW, Cardoso GC, Whittaker DJ, Price TD, Ketterson ED (2014) Hormonal, behavioral, and life-history traits exhibit correlated shifts in relation to population establishment in a novel environment. Am Nat 184:E147–E160

    Article  PubMed  Google Scholar 

  • Baschant U, Tuckermann J (2010) The role of the glucocorticoid receptor in inflammation and immunity. J Steroid Biochem Mol Biol 120:69–75

    Article  CAS  PubMed  Google Scholar 

  • Berger S, Martin LB, Wikelski M, Romero LM, Kalko EKV, Vitousek MN, Rödl T (2005) Corticosterone suppresses immune activity in territorial Galapagos marine iguanas during reproduction. Horm Behav 47:419–429

    Article  CAS  PubMed  Google Scholar 

  • Bókony V, Seress G, Nagy S, Lendvai ÁZ, Liker A (2012) Multiple indices of body condition reveal no negative effect of urbanization in adult house sparrows. Landsc Urban Plann 104:75–84

    Article  Google Scholar 

  • Bonier F, Martin PR, Sheldon KS, Jensen JP, Foltz SL, Wingfield JC (2007) Sex-specific consequences of life in the city. Behav Ecol 18:121–129

    Article  Google Scholar 

  • Bourgeon S, Kauffmann M, Geiger S, Raclot T, Robin JP (2010) Relationships between metabolic status, corticosterone secretion and maintenance of innate and adaptive humoral immunities in fasted re-fed mallards. J Exp Biol 213:3810–3818

    Article  CAS  PubMed  Google Scholar 

  • Braude S, Tang-Martinez Z, Taylor GT (1999) Stress, testosterone, and the immunoredistribution hypothesis. Behav Ecol 10:345–350

    Article  Google Scholar 

  • Breuner CW, Delehanty B, Boonstra R (2013) Evaluating stress in natural populations of vertebrates: total CORT is not good enough. Funct Ecol 27:24–36

    Article  Google Scholar 

  • Buehler DM, Bhola N, Barjaktarov D, Goymann W, Schwabl I, Tieleman BI, Piersma T (2008) Constitutive immune function responds more slowly to handling stress than corticosterone in a shorebird. Physiol Biochem Zool 81:673–681

    Article  PubMed  Google Scholar 

  • Butler MW, Leppert LL, Dufty AM Jr (2010) Effects of small increases in corticosterone levels on morphology, immune function, and feather development. Physiol Biochem Zool 83:78–86

    Article  CAS  PubMed  Google Scholar 

  • Butler MW, Stahlschmidt ZR, Ardia DR, Davies S, Davis J, Guillette LJ Jr, Johnson N, McCormick SD, McGraw KJ, DeNardo DF (2013) Thermal sensitivity of immune function: evidence against a generalist-specialist trade-off among endothermic and ectothermic vertebrates. Am Nat 181:761–774

    Article  PubMed  Google Scholar 

  • Cockrem JF (2013) Individual variation in glucocorticoid stress responses in animals. Gen Comp Endocrinol 181:45–58

    Article  CAS  PubMed  Google Scholar 

  • Davies S, Deviche P (2015) Regulation of feeding behavior and plasma testosterone in response to central neuropeptide Y administration in a songbird. J Exp Zool Part A 323:478–486

    Article  CAS  Google Scholar 

  • Davies S, Rodriguez NS, Sweazea KL, Deviche P (2013) The effect of acute stress and long-term corticosteroid administration on plasma metabolites in an urban and desert songbird. Physiol Biochem Zool 86:47–60

    Article  CAS  PubMed  Google Scholar 

  • Davies S, Behbahaninia H, Giraudeau M, Meddle SL, Waites K, Deviche P (2015) Advanced seasonal reproductive development in a male urban bird is reflected in earlier plasma luteinizing hormone rise but not energetic status. Gen Comp Endocrinol 224:1–10

    Article  CAS  PubMed  Google Scholar 

  • de Assis VR, Titon SC, Barsotti AM, Titon B Jr, Gomes FR (2015) Effects of acute restraint stress, prolonged captivity stress and transdermal corticosterone application on immunocompetence and plasma levels of corticosterone on the cururu Toad (Rhinella icterica). PLoS One 10:e0121005

    Article  PubMed  PubMed Central  Google Scholar 

  • De León-Nava MA, Nava K, Soldevila G, López-Griego L, Chávez-Ríos JR, Vargas-Villavicencio JA, Morales-Montor J (2009) Immune sexual dimorphism: effect of gonadal steroids on the expression of cytokines, sex steroid receptors, and lymphocyte proliferation. J Steroid Biochem Mol Biol 113:57–64

    Article  PubMed  Google Scholar 

  • DesRochers DW, Reed JM, Awerman J, Kluge JA, Wilkinson J, van Griethuijsen LI, Aman J, Romero LM (2009) Exogenous and endogenous corticosterone alter feather quality. Comp Biochem Physiol A 152:46–52

    Article  Google Scholar 

  • Deviche P, Davies S (2014) Reproductive phenology of urban birds: environmental cues and mechanisms. In: Gil D, Brumm H (eds) Avian urban ecology: behavioral and physiological adaptations. Oxford University Press, Oxford, pp 98–115

    Google Scholar 

  • Deviche P, Breuner C, Orchinik M (2001) Testosterone, corticosterone, and photoperiod interact to regulate plasma levels of binding globulin and free steroid hormone in dark-eyed juncos, Junco hyemalis. Gen Comp Endocrinol 122:67–77

    Article  CAS  PubMed  Google Scholar 

  • Deviche P, Gao S, Davies S, Sharp PJ, Dawson A (2012) Rapid stress-induced inhibition of plasma testosterone in free-ranging male rufous-winged sparrows, Peucaea carpalis: characterization, time course, and recovery. Gen Comp Endocrinol 177:1–8

    Article  CAS  PubMed  Google Scholar 

  • Deviche P, Beouche-Helias B, Davies S, Gao S, Lane S, Valle S (2014) Regulation of plasma testosterone, corticosterone, and metabolites in response to stress, reproductive stage, and social challenges in a desert male songbird. Gen Comp Endocrinol 203:120–131

    Article  CAS  PubMed  Google Scholar 

  • Dhabhar FS, McEwen BS (1999) Enhancing versus suppressive effects of stress hormones on skin immune function. Proc Natl Acad Sci USA 96:1059–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fokidis HB, Greiner EC, Deviche P (2008) Interspecific variation in avian blood parasites and haematology associated with urbanization in a desert habitat. J Avian Biol 39:300–310

    Article  Google Scholar 

  • Fokidis HB, Orchinik M, Deviche P (2009) Corticosterone and corticosteroid binding globulin in birds: relation to urbanization in a desert city. Gen Comp Endocrinol 160:259–270

    Article  CAS  PubMed  Google Scholar 

  • Fokidis HB, Hurley L, Rogowski C, Sweazea K, Deviche P (2011a) Effects of captivity and body condition on plasma corticosterone, locomotor behavior, and plasma metabolites in curve-billed thrashers. Physiol Biochem Zool 84:595–606

    Article  CAS  PubMed  Google Scholar 

  • Fokidis HB, Orchinik M, Deviche P (2011b) Context-specific territorial behavior in urban birds: no evidence for involvement of testosterone or corticosterone. Horm Behav 59:133–143

    Article  CAS  PubMed  Google Scholar 

  • Foltz SL, Davis JE, Battle KE, Greene VW, Laing BT, Rock RP, Ross AE, Tallant JA, Vega RC, Moore IT (2015) Across time and space: effects of urbanization on corticosterone and body condition vary over multiple years in song sparrows (Melospiza melodia). J Exp Zool Part A 323:109–120

    Article  CAS  Google Scholar 

  • French SS, DeNardo DF, Greives TJ, Strand CR, Demas GE (2010) Human disturbance alters endocrine and immune responses in the Galapagos marine iguana (Amblyrhynchus cristatus). Horm Behav 58:792–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelling M, McLaren GW, Mathews F, Mian R, Macdonald DW (2009) Impact of trapping and handling on leukocyte coping capacity in bank voles (Clethrionomys glareolus) and wood mice (Apodemus sylvaticus). Anim Welfare 18:1–7

    CAS  Google Scholar 

  • Graham SP, Kelehear C, Brown GP, Shine R (2012) Corticosterone–immune interactions during captive stress in invading Australian cane toads (Rhinella marina). Horm Behav 62:146–153

    Article  CAS  PubMed  Google Scholar 

  • Hau M (2007) Regulation of male traits by testosterone: implications for the evolution of vertebrate life histories. BioEssays 29:133–144

    Article  CAS  PubMed  Google Scholar 

  • Hopkins WA, DuRant SE (2011) Innate immunity and stress physiology of eastern hellbenders (Cryptobranchus alleganiensis) from two stream reaches with differing habitat quality. Gen Comp Endocrinol 174:107–115

    Article  CAS  PubMed  Google Scholar 

  • Koolhaas JM, Bartolomucci A, Buwalda B, De Boer SF, Flügge G, Korte SM, Meerlo P, Murison R, Olivier B, Palanza P (2011) Stress revisited: a critical evaluation of the stress concept. Neurosci Biobehav Rev 35:1291–1301

    Article  CAS  PubMed  Google Scholar 

  • Kuhlman JR, Martin LB (2010) Captivity affects immune redistribution to skin in a wild bird. Funct Ecol 24:830–837

    Article  Google Scholar 

  • Kurvers RHJM, Roberts ML, McWilliams SR, Peters A (2008) Experimental manipulation of testosterone and condition during molt affects activity and vocalizations of male blue tits. Horm Behav 54:263–269

    Article  CAS  PubMed  Google Scholar 

  • Lupien SJ, McEwen BS, Gunnar MR, Heim C (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10:434–445

    Article  CAS  PubMed  Google Scholar 

  • Lynn SE, Stamplis TB, Barrington WT, Weida N, Hudak CA (2010) Food, stress, and reproduction: short-term fasting alters endocrine physiology and reproductive behavior in the zebra finch. Horm Behav 58:214–222

    Article  CAS  PubMed  Google Scholar 

  • Lynn SE, Perfito N, Guardado D, Bentley GE (2015) Food, stress, and circulating testosterone: cue integration by the testes, not the brain, in male zebra finches (Taeniopygia guttata). Gen Comp Endocrinol 215:1–9

    Article  CAS  PubMed  Google Scholar 

  • Martin LB (2009) Stress and immunity in wild vertebrates: timing is everything. Gen Comp Endocrinol 163:70–76

    Article  CAS  PubMed  Google Scholar 

  • Martin LB, Gilliam J, Han P, Lee K, Wikelski M (2005) Corticosterone suppresses cutaneous immune function in temperate but not tropical house sparrows, Passer domesticus. Gen Comp Endocrinol 140:126–135

    Article  CAS  Google Scholar 

  • Martin LB, Weil ZM, Nelson RJ (2008) Seasonal changes in vertebrate immune activity: mediation by physiological trade-offs. Philos Trans R Soc Lond B Biol Sci 363:321–339

    Article  PubMed  Google Scholar 

  • Matson KD, Ricklefs RE, Klasing KC (2005) A hemolysis–hemagglutination assay for characterizing constitutive innate humoral immunity in wild and domestic birds. Dev Comp Immunol 29:275–286

    Article  CAS  PubMed  Google Scholar 

  • Matson KD, Tieleman BI, Klasing KC (2006) Capture stress and the bactericidal competence of blood and plasma in five species of tropical birds. Physiol Biochem Zool 79:556–564

    Article  PubMed  Google Scholar 

  • McGuire NL, Bentley GE (2010) A functional neuropeptide system in vertebrate gonads: gonadotropin-inhibitory hormone and its receptor in testes of field-caught house sparrow (Passer domesticus). Gen Comp Endocrinol 166:565–572

    Article  CAS  PubMed  Google Scholar 

  • McGuire NL, Koh A, Bentley GE (2013) The direct response of the gonads to cues of stress in a temperate songbird species is season-dependent. PeerJ 1:e139

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendel CM (1989) The free hormone hypothesis: a physiologically based mathematical model. Endocr Rev 10:232–274

    Article  CAS  PubMed  Google Scholar 

  • Merrill L, Angelier F, O’Loghlen AL, Rothstein SI, Wingfield JC (2012) Sex-specific variation in brown-headed cowbird immunity following acute stress: a mechanistic approach. Oecologia 170:25–38

    Article  PubMed  Google Scholar 

  • Miles DB, Calsbeek R, Sinervo B (2007) Corticosterone, locomotor performance, and metabolism in side-blotched lizards (Uta stansburiana). Horm Behav 51:548–554

    Article  CAS  PubMed  Google Scholar 

  • Millet S, Bennett J, Lee KA, Hau M, Klasing KC (2007) Quantifying and comparing constitutive immunity across avian species. Dev Comp Immunol 31:188–201

    Article  CAS  PubMed  Google Scholar 

  • Moore MC, Thompson CW, Marler CA (1991) Reciprocal changes in corticosterone and testosterone levels following acute and chronic handling stress in the tree lizard, Urosaurus ornatus. Gen Comp Endocrinol 81:217–226

    Article  CAS  PubMed  Google Scholar 

  • Moore IT, Perfito N, Wada H, Sperry TS, Wingfield JC (2002) Latitudinal variation in plasma testosterone levels in birds of the genus Zonotrichia. Gen Comp Endocrinol 129:13–19

    Article  CAS  PubMed  Google Scholar 

  • Müller C, Jenni-Eiermann S, Jenni L (2011) Heterophils/Lymphocytes-ratio and circulating corticosterone do not indicate the same stress imposed on Eurasian kestrel nestlings. Funct Ecol 25:566–576

    Article  Google Scholar 

  • Murton RK, Westwood NJ (1977) Avian breeding cycles. Clarendon Press, Oxford

    Google Scholar 

  • Owen-Ashley NT, Hasselquist D, Wingfield JC (2004) Androgens and the immunocompetence handicap hypothesis: unraveling direct and indirect pathways of immunosuppression in song sparrows. Am Nat 164:490–505

    Article  PubMed  Google Scholar 

  • Partecke J, Van’t Hof T, Gwinner E (2005) Underlying physiological control of reproduction in urban and forest-dwelling European blackbirds Turdus merula. J Avian Biol 36:295–305

    Article  Google Scholar 

  • Partecke J, Schwabl I, Gwinner E (2006) Stress and the city: urbanization and its effects on the stress physiology in European Blackbirds. Ecology 87:1945–1952

    Article  PubMed  Google Scholar 

  • Peig J, Green AJ (2009) New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118:1883–1891

    Article  Google Scholar 

  • Pickering AD, Pottinger TG, Carragher J, Sumpter JP (1987) The effects of acute and chronic stress on the levels of reproductive hormones in the plasma of mature male brown trout, Salmo trutta L. Gen Comp Endocrinol 68:249–259

    Article  CAS  PubMed  Google Scholar 

  • Powell C, Lill A, Johnstone CP (2013) Body condition and chronic stress in urban and rural noisy miners. Open Ornith J 6:25–31

    Article  Google Scholar 

  • Råberg L, Grahn M, Hasselquist D, Svensson E (1998) On the adaptive significance of stress-induced immunosuppression. Proc R Soc Lond B 265:1637–1641

    Article  Google Scholar 

  • Rich EL, Romero LM (2005) Exposure to chronic stress downregulates corticosterone responses to acute stressors. Am J Physiol Regul Integr Comp Physiol 288:1628–1636

    Article  Google Scholar 

  • Roberts ML, Buchanan KL, Hasselquist D, Evans MR (2007) Effects of testosterone and corticosterone on immunocompetence in the zebra finch. Horm Behav 51:126–134

    Article  CAS  PubMed  Google Scholar 

  • Roberts ML, Buchanan KL, Evans MR, Marin RH, Satterlee DG (2009) The effects of testosterone on immune function in quail selected for divergent plasma corticosterone response. J Exp Biol 212:3125–3131

    Article  PubMed  Google Scholar 

  • Rosner W (2006) Sex steroids and the free hormone hypothesis. Cell 124:455–456

    Article  CAS  PubMed  Google Scholar 

  • Ruiz G, Rosenmann M, Novoa FF, Sabat P (2002) Hematological parameters and stress index in rufous-collared sparrows dwelling in urban environments. Condor 104:162–166

    Article  Google Scholar 

  • Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89

    CAS  PubMed  Google Scholar 

  • Schoech SJ, Bowman R, Bridge ES, Boughton RK (2007) Baseline and acute levels of corticosterone in Florida scrub-jays (Aphelocoma coerulescens): effects of food supplementation, suburban habitat, and year. Gen Comp Endocrinol 154:150–160

    Article  CAS  PubMed  Google Scholar 

  • Seddon RJ, Klukowski M (2012) Influence of stressor duration on leukocyte and hormonal responses in male southeastern five-lined skinks (Plestiodon inexpectatus). J Exp Zool Part A 317:499–510

    Article  CAS  Google Scholar 

  • Stier KS, Almasi B, Gasparini J, Piault R, Roulin A, Jenni L (2009) Effects of corticosterone on innate and humoral immune functions and oxidative stress in barn owl nestlings. J Exp Biol 212:2085–2091

    Article  CAS  PubMed  Google Scholar 

  • Tweit RC, Finch DM (1994) Abert’s towhee (Melozone aberti). In: Poole A (ed) The birds of North America. Cornell Lab of Ornithology, Ithaca

    Google Scholar 

  • Wingfield JC, Maney DL, Breuner CW, Jacobs JD, Lynn S, Ramenofsky M, Richardson RD (1998) Ecological bases of hormone-behavior interactions: the “emergency life history stage”. Am Zool 38:191–206

    Article  CAS  Google Scholar 

  • Woodley SK, Lacy EL (2010) An acute stressor alters steroid hormone levels and activity but not sexual behavior in male and female Ocoee salamanders (Desmognathus ocoee). Horm Behav 58:427–432

    Article  CAS  PubMed  Google Scholar 

  • Zera AJ, Harshman LG (2001) The physiology of life history trade-offs in animals. Annu Rev Ecol Syst 32:95–126

    Article  Google Scholar 

  • Zylberberg M (2015) Common measures of immune function vary with time of day and sampling protocol in five passerine species. J Exp Biol 218:757–766

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Karla Moeller for guidance on scoring lysis and agglutination, and to Dale Denardo for use of equipment for the immune assay. We thank two anonymous reviewers whose suggestions helped improve this manuscript. We thank Grace Gao, Marilyn Ramenofsky, and John Wingfield for comments on an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Davies.

Ethics declarations

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures were approved by the Arizona State University Institutional Animal Care and Use Committee, and were conducted under current scientific collecting permits (Arizona Game and Fish Department, US Fish and Wildlife Service, and Bird Banding Laboratory). The authors declare that they have no competing interests.

Funding

This research was supported by the National Science Foundation under Grant No. DEB-1026865, Central Arizona-Phoenix Long-Term Ecological Research (CAP LTER).

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davies, S., Noor, S., Carpentier, E. et al. Innate immunity and testosterone rapidly respond to acute stress, but is corticosterone at the helm?. J Comp Physiol B 186, 907–918 (2016). https://doi.org/10.1007/s00360-016-0996-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-016-0996-y

Keywords

Navigation