Skip to main content
Log in

Claudin-8 and -27 tight junction proteins in puffer fish Tetraodon nigroviridis acclimated to freshwater and seawater

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Genes encoding for claudin-8 and -27 tight junction proteins in the euryhaline puffer fish (Tetraodon nigroviridis) were identified using its recently sequenced genome. Phylogenetic analysis indicated that multiple genes encoding for claudin-8 proteins (designated Tncldn8a, Tncldn8b, Tncldn8c and Tncldn8d) arose by tandem gene duplication. In contrast, both tandem and whole genome duplication events appear to have generated genes encoding for claudin-27 proteins (designated Tncldn27a, Tncldn27b, Tncldn27c and Tncldn27d). Tncldn8 and Tncldn27 mRNA were widely distributed in Tetraodon, suggesting involvement in various physiological processes. All Tncldn8 and Tncldn27 genes were expressed in gill and skin tissue (i.e., epithelia exposed directly to the external environment). A potential role for claudin-8 and -27 proteins in the regulation of hydromineral balance in Tetraodon was investigated by examining alterations in mRNA abundance in select ionoregulatory tissue of fish acclimated to freshwater (FW) and seawater (SW). In FW or SW, Tetraodon exhibited alterations in Na+-K+-ATPase activity (a correlate of transcellular transport) typical of a euryhaline teleost fish. Simultaneously, tissue and gene specific alterations in Tncldn8 and Tncldn27 transcript abundance occurred. These data provide some insight into the duplication history of cldn8 and cldn27 genes in fishes and suggest a possible role for claudin-8 and -27 proteins in the osmoregulatory strategies of euryhaline teleosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acharya P, Beckel J, Ruiz WG, Wang E, Rojas R, Birder L, Apodaca G (2004) Distribution of the tight junction proteins ZO-1, occludin, and claudin-4, -8, and -12 in bladder epithelium. Am J Physiol Renal Physiol 287:F305–F318

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish hox clusters and vertebrate genome revolution. Science 282:1711–1714

    Article  PubMed  CAS  Google Scholar 

  • Avella M, Ehrenfeld J (1997) Fish gill respiratory cells in culture: a new model for Cl secreting epithelia. J Membr Biol 156:87–97

    Article  PubMed  CAS  Google Scholar 

  • Bagherie-Lachidan M, Wright SI, Kelly SP (2008) Claudin-3 tight junction proteins in Tetraodon nigroviridis: cloning, tissue-specific expression and a role in hydromineral balance. Am J Physiol Regul Integr Comp Physiol 294:R1638–R1647

    PubMed  CAS  Google Scholar 

  • Balkovetz DF (2006) Claudins at the gate: determinants of renal epithelial tight junction paracellular permeability. Am J Physiol Renal Physiol 290:F572–F579

    Article  PubMed  CAS  Google Scholar 

  • Charoenphandhu N, Wongdee K, Tudpor K, Padaranandaka J, Krishnamra N (2007) Chronic metabolic acidosis upregulated claudin mRNA expression in the duodenal enterocytes of female rats. Life Sci 80:1729–1737

    Article  PubMed  CAS  Google Scholar 

  • Chasiotis H, Kelly SP (2008) Occludin immunolocalization and protein expression in goldfish. J Exp Biol 211:1524–1534

    Article  PubMed  CAS  Google Scholar 

  • Chasiotis H, Effendi JC, Kelly SP (2008) Occludin expression in goldfish held in ion-poor water. J Comp Physiol B (in press)

  • Christoffels A, Koh EGL, Chia J, Brenner S, Aparicio S, Venkatesh B (2004) Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol 21:1146–1151

    Article  PubMed  CAS  Google Scholar 

  • Enck AH, Berger UV, Yu ASL (2001) Claudin-2 is selectively expressed in proximal nephron in mouse kidney. Am J Physiol Renal Physiol 281:F966–F974

    PubMed  CAS  Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (2004) PHYLIP (Phylogeny Inference Package) version 3.6b. Seattle: Department of Genome Sciences, University of Washington

  • Fletcher M, Kelly SP, Pärt P, O’Donnell MJ, Wood CM (2000) Transport properties of cultured branchial epithelia from freshwater rainbow trout: a novel preparation with mitochondria-rich cells. J Exp Biol 203:1523–1537

    PubMed  CAS  Google Scholar 

  • Fujita H, Chiba H, Yokozaki H, Sakai N, Sugimoto K, Wada T, Kojima T, Yamashita T, Sawada N (2006) Differential expression and subcellular localization of claudin-7, -8, -12, -13, and -15 along the mouse intestine. J Histochem Cytochem 54:933–944

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S (1998) Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141:1539–1550

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Furuse K, Sasaki H, Tsukita S (2001) Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol 153:263–272

    Article  PubMed  CAS  Google Scholar 

  • Higgins DG, Bleasby AJ, Fuchs R (1992) CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci 8:189–191

    PubMed  CAS  Google Scholar 

  • Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biémont C, Skalli Z, Cattolico L, Poulain J, de Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigó R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quétier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Crollius HR (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957

    Article  PubMed  Google Scholar 

  • Jeansonne B, Lu Q, Goodenough DA, Chen YH (2003) Claudin-8 interacts with multi-PDZ domain protein 1 (MUPP1) and reduces paracellular conductance in epithelial cells. Cell Mol Biol 49:13–21

    PubMed  CAS  Google Scholar 

  • Kalujnaia S, McWilliam IS, Zaguinaiko VA, Feilen AL, Nicholson J, Hazon N, Cutler CP, Cramb G (2007) Transcriptomic approach to the study of osmoregulation in the European eel Anguilla anguilla. Physiol Genomics 31:385–401

    Article  PubMed  CAS  Google Scholar 

  • Kelly SP, Wood CM (2001) Effect of cortisol on the physiology of cultured pavement cell epithelia from freshwater trout gills. Am J Physiol Regul Integr Comp Physiol 281:R811–R820

    PubMed  CAS  Google Scholar 

  • Kelly SP, Wood CM (2002a) Cultured gill epithelia from freshwater tilapia (Oreochromis niloticus): effect of cortisol and homologous serum supplements from stressed and unstressed fish. J Membr Biol 190:29–42

    Article  PubMed  CAS  Google Scholar 

  • Kelly SP, Wood CM (2002b) Prolactin effects on cultured pavement cell epithelia and pavement cell plus mitochondria-rich cell epithelia from freshwater rainbow trout gills. Gen Comp Endocrinol 128:44–56

    Article  PubMed  CAS  Google Scholar 

  • Kelly SP, Fletcher M, Pärt P, Wood CM (2000) Procedures for the preparation and culture of ‘reconstructed’ rainbow trout branchial epithelia. Methods Cell Sci 22:153–163

    Article  PubMed  CAS  Google Scholar 

  • Kiuchi-Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S (2002) Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol 13:875–886

    PubMed  CAS  Google Scholar 

  • Kollmar R, Nakamura SK, Kappler JA, Hudspeth AJ (2001) Expression and phylogeny of claudins in vertebrate primordia. Proc Natl Acad Sci USA 98:10196–10201

    Article  PubMed  CAS  Google Scholar 

  • Li WY, Huey CL, Yu ASL (2004) Expression of claudin-7 and -8 along the mouse nephron. Am J Physiol Renal Physiol 286:F1063–F1071

    Article  PubMed  CAS  Google Scholar 

  • Loh YH, Christoffels A, Brenner S, Hunziker W, Venkatesh B (2004) Extensive expansion of the claudin gene family in the teleost fish, Fugu rubripes. Genome Res 14:1248–1257

    Article  PubMed  CAS  Google Scholar 

  • Loretz CA (1995) Electrophysiology of ion transport in teleost intestinal cells. In: Wood CM, Shuttleworth TJ (eds) Fish physiology, vol 14, Cellular and molecular approaches to fish ionic regulation. Academic Press, New York

  • Marshall WS (2002) Na+, Cl, Ca2+ and Zn2+ transport by fish gills: retrospective review and prospective synthesis. J Exp Zool 293:264–283

    Article  PubMed  CAS  Google Scholar 

  • Marshall WS, Grosell M (2006) Ion transport, osmoregulation, and acid-base balance. In: Evans DH, Claiborne JB (eds) The Physiology of fishes, 3rd edn. Taylor and Francis Group, Boca Raton, pp 177–210

    Google Scholar 

  • McDonald DG, Freda J, Cavdek V, Gonzalez R, Zia S (1991) Interspecific differences in gill morphology of freshwater fish in relation to tolerance of low-pH environments. Physiol Zool 64:124–144

    Google Scholar 

  • Morita K, Furuse M, Fujimoto K, Tsukita S (1999) Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci USA 96:511–516

    Article  PubMed  CAS  Google Scholar 

  • Nicholas KB, Nicholas HB Jr (1997) GeneDoc: a tool for editing and annotating multiple sequence alignments. http://www.nrbsc.org/gfx/genedoc/gddl.htm

  • Nishimura H, Fan Z (2003) Regulation of water movement across vertebrate renal tubules. Comp Biochem Physiol 136A:479–498

    CAS  Google Scholar 

  • Ohtsuki S, Yamaguchi H, Katsukura Y, Asashima T, Terasaki T (2008) mRNA expression levels of tight junction protein genes in mouse brain capillary endothelial cells highly purified by magnetic cell sorting. J Neurochem 104:147–154

    PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Rahner C, Mitic LL, Anderson JM (2001) Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology 120:411–422

    Article  PubMed  CAS  Google Scholar 

  • Sardet C, Pisam M, Maetz J (1979) The surface epithelium of teleostean fish gills. Cellular and junctional adaptations of the chloride cell in relation to salt adaptation. J Cell Biol 80:96–117

    Article  PubMed  CAS  Google Scholar 

  • Schneeberger EE, Lynch RD (2004) The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 286:C1213–C1228

    Article  PubMed  CAS  Google Scholar 

  • Taylor JS, Braasch I, Frickey T, Meyer A, Van de Peer Y (2003) Genome duplication, a trait shared by 22,000 species of ray-finned fish. Genome Res 13:382–390

    Article  PubMed  CAS  Google Scholar 

  • Tipsmark CK, Kiilerich P, Nilsen TO, Ebbesson LO, Stefansson SO, Madsen SS (2008) Branchial expression patterns of claudin isoforms in Atlantic salmon during seawater acclimation and smoltification. Am J Physiol Integrative Comp Physiol 294:R1563–R1574

    CAS  Google Scholar 

  • Van Itallie CM, Anderson JM (2006) Claudins and epithelial paracellular transport. Annu Rev Physiol 68:403–429

    Article  PubMed  Google Scholar 

  • Van Itallie CM, Rahner C, Anderson JM (2001) Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J Clin Invest 107:1319–1327

    Article  PubMed  Google Scholar 

  • Wang F, Daugherty B, Keise LL, Wei Z, Foley JP, Savani RC, Koval M (2003) Heterogeneity of claudin expression by alveolar epithelial cells. Am J Respir Cell Mol Biol 29:62–70

    Article  PubMed  CAS  Google Scholar 

  • Wood CM, Kelly SP, Zhou B, Fletcher M, O’Donnell M, Eletti B, Pärt P (2002) Cultured gill epithelia as models for the freshwater fish gill. Biochim Biophys Acta 1566:72–83

    Article  PubMed  CAS  Google Scholar 

  • Yu ASL, Enck AH, Lencer WI, Schneeberger EE (2003) Claudin-8 expression in Madin-Darby canine kidney cells augments the paracellular barrier to cation permeation. J Biol Chem 278(19):17350–17359

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSERC Discovery Grants and CFI New Opportunities Funds to S.P.K. and S.I.W. All procedures conformed to the guidelines of the Canadian Council for Animal Care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott P. Kelly.

Additional information

Communicated by H. V. Carey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagherie-Lachidan, M., Wright, S.I. & Kelly, S.P. Claudin-8 and -27 tight junction proteins in puffer fish Tetraodon nigroviridis acclimated to freshwater and seawater. J Comp Physiol B 179, 419–431 (2009). https://doi.org/10.1007/s00360-008-0326-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-008-0326-0

Keywords

Navigation