Skip to main content
Log in

Energetics of tropical hibernation

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

In this field study, the energetic properties of tropical hibernation were investigated by measuring oxygen consumption and body temperature of the Malagasy primate Cheirogaleus medius in their natural hibernacula. These lemurs use tree holes with extremely varying insulation capacities as hibernacula. In poorly insulated tree holes, tree hole temperature and body temperature fluctuated strongly each day (between 12.8 and 34.4°C). The metabolic rate under these conditions also showed large daily fluctuations between about 29.0 ml O2/h and 97.9 ml O2/h in parallel with changes in body temperature. In well insulated tree holes in very large trees on the other hand, tree hole temperature and body temperature remained relatively constant at about 25°C. Lemurs hibernating in these tree holes showed a more constant metabolic rate at an intermediate level, but hibernation was interrupted by repeated arousals with peak metabolic rates up to 350 ml O2/h. The occurrence of these spontaneous arousals proved that the ability for thermoregulation persists during hibernation. Arousals were energetically costly, but much less so than in temperate and arctic hibernators. Despite the decisive influence of tree hole properties on the pattern of body temperature and metabolic rate during hibernation, the choice of the hibernaculum does not seem to be of energetic importance. The overall energetic savings by tropical hibernation amounted to about 70% as compared to the active season (31.5 vs. 114.3 kJ/d). Therefore, tropical hibernation in C. medius is an effective, well-regulated adaptive response to survive unfavourable seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BMR:

Basal metabolic rate

DREE:

Daily resting energy expenditure

MR:

Metabolic rate

fRMR:

Field resting metabolic rate

RQ:

Respiratory quotient

T a :

Ambient temperature

T b :

Body temperature

T h :

Tree hole temperature

VO2 :

Rate of oxygen consumption

References

  • Bollen A, Donati G, Fietz F, Schwab D, Ramanamanjato J-B, Randrihasipara L, Van Elsacker L, Ganzhorn JU (2005) An intersite comparison on fruit characteristics in Madagascar: evidence for selection pressure through abiotic constraints rather than through co-evolution. In: Dew J, Boubli J (eds) Fruits and frugivores: the search for strong interactors. Kluwer, New York, pp 92–118

    Google Scholar 

  • Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181

    PubMed  CAS  Google Scholar 

  • Cossins AR, Barnes B (1996) Southern discomfort. Nature 382:582–583

    Article  CAS  Google Scholar 

  • Dausmann KH (2005) Measuring body temperature in the field—evaluation of external vs. implanted transmitters in a small mammal. J Therm Biol 30:195–202

    Article  Google Scholar 

  • Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2004) Hibernation in a tropical primate. Nature 429:825–826

    Article  PubMed  CAS  Google Scholar 

  • Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2005) Hibernation in the tropics: lessons from a primate. J Comp Physiol B 175:147–155

    Article  PubMed  Google Scholar 

  • Fietz J (1999) Monogamy as a rule rather than exception in nocturnal lemurs: the case of the fat-tailed dwarf lemur, Cheirogaleus medius. Ethology 105:259–272

    Article  Google Scholar 

  • Fietz J, Ganzhorn JU (1999) Feeding ecology of the hibernating primate Cheirogaleus medius: how does it get so fat? Oecologia 121:157–164

    Article  Google Scholar 

  • Florant GL (1998) Lipid metabolism in hibernators: the importance of essential fatty acids. Am Zool 38:331–340

    CAS  Google Scholar 

  • Ganzhorn JU, Sorg J-P (eds) (1996) Ecology and economy of a tropical dry forest in Madagascar. Primate Report 46–1

  • Geiser F (1988) Reduction of metabolism during hibernation and daily torpor in mammals and birds: temperature effect or physiological inhibition? J Comp Physiol B 158:25–37

    Article  PubMed  CAS  Google Scholar 

  • Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66:239–274

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, Brigham RM (2000) Torpor, thermal biology, and energetics in Australian long-eared bats (Nyctophilus). J Comp Physiol B 170:153–162

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, Drury DR (2003) Radiant heat affects thermoregulation and energy expenditure during rewarming from torpor. J Comp Physiol B 173:55–60

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol Zool 68:935–966

    Google Scholar 

  • Hackländer K, Arnold W (1999) Male-caused failure of female reproduction and its adaptive value in alpine marmots (Marmota marmota). Behav Ecol 10:592–597

    Article  Google Scholar 

  • Haysen V, Lacy RC (1985) Basal metabolic rate in mammals: taxonomic differences in the allometry of BMR and body mass. Comp Biochem Physiol 81A:741–754

    Article  Google Scholar 

  • Heldmaier G (1989) Seasonal acclimization of energy requirements in mammals: functional significance of body weight control, hypothermia, torpor and hibernation. In: Wieser W, Gnaiger E (eds) Energy transformations in cells and organisms. Georg Thieme Verlag, Stuttgart, pp 130–139

    Google Scholar 

  • Heldmaier G, Neuweiler G (2004) Vergleichende Tierphysiologie. Springer, Heidelberg

    Google Scholar 

  • Heldmaier G, Ortmann S, Elvert R (2004) Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol 141:317–329

    Article  PubMed  Google Scholar 

  • Heldmaier G, Ortmann S, Körtner G (1993) Energy requirements of hibernating alpine marmots. In: Carey C, Florant GL, Wunder BA, Horwitz BA (eds) Life in the cold: ecological. physiological and molecular mechanisms. Westview Press, Boulder, pp 175–183

    Google Scholar 

  • Heldmaier G, Ruf T (1992) Body temperature and metabolic rate during natural hypothermia in endotherms. J Comp Physiol B 162:696–706

    Article  PubMed  CAS  Google Scholar 

  • Heldmaier G, Steinlechner S (1981) Seasonal pattern and energetics of short daily torpor in the Djungarian hamster, Phodopus sungorus. Oecologia 48:265–270

    Article  Google Scholar 

  • Hinds DS, Baudinette RV, Macmillen RE, Halpern EA (1993) Maximum metabolism and the aerobic factorial scope of endotherms. J Exp Biol 182:41–56

    PubMed  CAS  Google Scholar 

  • Hladik CM, Charles-Dominique P, Petter JJ (1980) Feeding strategies of five nocturnal prosimians in the dry forest of the west coast of Madagascar. In: Charles-Dominique P, Cooper HM, Hladik A, Hladik CM, Pages E, Pariente GF, Petter-Rousseaux A, Petter JJ, Schilling A (eds) Nocturnal Malagasy primates: ecology, physiology and behaviour. Academic Press, New York, pp 41–73

    Google Scholar 

  • Humphries MM, Thomas DW, Kramer DL (2003) The role of energy availability in mammalian hibernation: a cost-benefit approach. Physiol Biochem Zool 76:165–179

    Article  PubMed  Google Scholar 

  • Lovegrove BG (2003) The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum. J Comp Physiol B 173:87–112

    PubMed  CAS  Google Scholar 

  • Lovegrove BG, Génin F (2008) Torpor and hibernation in a basal placental mammal, the Lesser Hedgehog Tenrec Echinops telfairi. J Comp Physiol B 178:691–698

    Article  PubMed  Google Scholar 

  • Lovegrove BG, Körtner G, Geiser F (1999) The energetic cost of arousal from torpor in the marsupial Sminthopsis macroura: benefits of summer ambient temperature cycles. J Comp Physiol B 169:11–18

    Article  PubMed  CAS  Google Scholar 

  • Lovegrove BG, Raman J (1998) Torpor patterns in the pouched mouse (Saccostomus campestris; Rodentia): a model animal for unpredictable environments. J Comp Physiol B 168:303–312

    Article  PubMed  CAS  Google Scholar 

  • Lyman CP, Chatfield PO (1955) Physiology of hibernation in mammals. Physiol Rev 35:403–425

    PubMed  CAS  Google Scholar 

  • Lyman CP, Willis JS, Malan A, Wang LCH (1982) Hibernation and torpor in mammals and birds. Academic Press, New York

    Google Scholar 

  • Müller AE (1999) Social organization of the fat-tailed dwarf lemur (Cheirogaleus medius) in North-western Madagascar. In: Rakotosamimanana B, Rasaminanana H, Ganzhorn JU, Goodman SM (eds) New directions in lemur studies. Kluwer/Plenum Publishers, New York, pp 139–157

    Google Scholar 

  • Mzilikazi N, Lovegrove BG, Ribble DO (2002) Exogenous passive heating during torpor arousal in free-ranging rock elephant shrews, Elephantulus myurus. Oecologia 133:307–314

    Article  Google Scholar 

  • Ortmann S, Heldmaier G, Schmid J, Ganzhorn JU (1997) Spontaneous daily torpor in Malagasy mouse lemurs. Naturwissenschaften 84:28–32

    Article  PubMed  CAS  Google Scholar 

  • Petter JJ (1978) Ecological and physiological adaptations of five sympatric nocturnal lemurs to seasonal variations in food production. In: Chivers DJ, Herbert J (eds) Recent advances in primatology, vol 1. Academic Press, New York, pp 211–223

    Google Scholar 

  • Scholander PF, Walters V, Hock R, Irving L (1950) Body insulation of some arctic and tropical mammals and birds. Biol Bull 99:225–236

    Article  PubMed  CAS  Google Scholar 

  • Schmid J (2000) Daily torpor in the gray mouse lemur (Microcebus murinus) in Madagascar: energetic consequences and biological significance. Oecologia 123:175–183

    Article  Google Scholar 

  • Schmid J, Ruf T, Heldmaier G (2000) Metabolism and temperature regulation during daily torpor in the smallest primate, the pygmy mouse lemur (Mircrocebus myoxinus) in Madagascar. J Comp Physiol B 170:59–68

    Article  PubMed  CAS  Google Scholar 

  • Turbill C, Law BS, Geiser F (2003) Summer torpor in a free-ranging bat from subtropical Australia. J Therm Biol 28:223–226

    Article  Google Scholar 

  • Walter H, Breckle S-W (1986) Spezielle Ökologie der gemäßigten und arktischen Zonen Euro-Nordasiens. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Wang LCH (1979) Time patterns and metabolic rates of natural torpor in the Richardson’s ground squirrel. Can J Zool 57:149–155

    Article  Google Scholar 

  • Wang LCH, Lee T-F (2000) Perspectives on metabolic suppression during mammalian hibernation and daily torpor. In: Heldmaier G, Klingenspor M (eds) Life in the cold. Springer, Berlin, pp 149–158

    Google Scholar 

  • Willis JS (1982) The mystery of periodic arousal. In: Lyman CP, Willis JS, Malan A, Wang LCH (eds) Hibernation and torpor in mammals and birds. Academic Press, New York, pp 92–101

    Google Scholar 

Download references

Acknowledgments

We are grateful to the “Commission Tripartite” of the Malagasy Government, the “Laboratoire de Primatologie et des Vertébrés de l’Université d’Antananarivo”, the “Parc Botanique et Zoologique de Tsimbazaza”, the “Ministère pour la Production Animale” and the “Département des Eaux et Forêts” for permits to work in Madagascar. We also thank the “Centre de Formation Professionnelle Forestière de Morondava” for their hospitality and permission to work on their concession. B. Rakotosamimanana, R. Rasoloarison, L. Razafimanantsoa, J. Fietz and J. Schmid supported the field project in numerous ways. We thank the German Primate Centre (DPZ) and P. Kappeler for the opportunity to work at the field station. Financial aid from the Deutscher Akademischer Austauschdienst and the Deutsche Forschungsgemeinschaft is gratefully acknowledged. All experiments comply with the current laws of the country where they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Dausmann.

Additional information

Communicated by H. V. Carey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dausmann, K.H., Glos, J. & Heldmaier, G. Energetics of tropical hibernation. J Comp Physiol B 179, 345–357 (2009). https://doi.org/10.1007/s00360-008-0318-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-008-0318-0

Keywords

Navigation