Skip to main content

Advertisement

Log in

Characterisation of electrogenic nutrient absorption in the Cftr TgH(neoim)Hgu mouse model

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Most cystic fibrosis (CF) patients show an exocrine pancreatic insufficiency that results in lower enzyme and bicarbonate secretion. To test whether an altered function of nutrient transporters might additionally attribute to the lower bodyweight of CF patients we investigated electrogenic absorption of alanine, glycyl-glutamine, glucose and the effect of pH on nutrient absorption by Ussing chambers in a CF mouse model carrying the Cftr TgH(neoim)Hgu mutation. The electrogenic transport of all three nutrients was similar between the D2.129P2(CF/3)-Cftr TgH(neoim)Hgu congenic strain and DBA/2J mice as well as between the B6.129P2(CF/3)-Cftr TgH(neoim)Hgu congenic strain and C57BL/6J mice. This indicates that the Cftr TgH(neoim)Hgu mutation does not affect the electrogenic absorption of alanine, glycyl-glutamine and glucose. In contrast, electrogenic nutrient absorption was reduced in the CF/1-Cftr TgH(neoim)Hgu and CF/3-Cftr TgH(neoim)Hgu inbred strains compared to the HsdOla:MF1, D2.129P2(CF/3)-Cftr TgH(neoim)Hgu and B6.129P2(CF/3)-Cftr TgH(neoim)Hgu strains, whereas no difference was found among the wild-type strains. This indicates that not the Cftr TgH(neoim)Hgu mutation but differences in the genetic background of the CF/1-Cftr TgH(neoim)Hgu and CF/3-Cftr TgH(neoim)Hgu strains compared to HsdOla:MF1, D2.129P2(CF/3)-Cftr TgH(neoim)Hgu and B6.129P2(CF/3)-Cftr TgH(neoim)Hgu strains are associated with the differences in electrogenic nutrient absorption. The electrogenic absorption of alanine, glycyl-glutamine and glucose was not influenced by an acidic pH (5.4) compared to absorption at pH 7.4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CF:

Cystic fibrosis

CFTR:

Cystic fibrosis transmembrane conductance regulator (human)

Cftr:

Cystic fibrosis transmembrane conductance regulator (murine)

NHE3:

Na+/H+ Exchanger isoform 3

PEPT1:

Peptide transporter isoform 1

WT:

Wild-type

References

  • Adibi SA (2003) Regulation of expression of the intestinal oligopeptide transporter (Pept-1) in health and disease. Am J Physiol Gastrointest Liver Physiol 285:G779–G788

    PubMed  CAS  Google Scholar 

  • Amasheh S, Wenzel U, Boll M, Dorn D, Weber W-M, Clauss W, Daniel H (1997) Transport of charged dipeptides by the intestinal H+/peptide symporter PepT1 expressed in Xenopus laevis oocytes. J Membr Biol 155:247–256

    Article  PubMed  CAS  Google Scholar 

  • Baker SS, Borowitz D, Baker RD (2005) Pancreatic exocrine function in patients with cystic fibrosis. Curr Gastroenterol Rep 7:227–233

    Article  PubMed  Google Scholar 

  • Baxter P, Goldhill J, Hardcastle J, Hardcastle PT, Taylor CJ (1990) Enhanced intestinal glucose and alanine transport in cystic fibrosis. Gut 31:817–820

    Article  PubMed  CAS  Google Scholar 

  • Bleich E-M, Leonhard-Marek S, Beyerbach M, Breves G (2007) Characterisation of chloride currents across the proximal colon in Cftr(TgH(neoim)1Hgu) congenic mice. J Comp Physiol B. doi:10.1007/s00360-006-0109-4

  • Bröer A, Cavanaugh J, Rasko JEJ, Bröer S (2006) The molecular basis of neutral aminoacidurias. Pflügers Arch 451:511–517

    Article  PubMed  Google Scholar 

  • Bröer A, Klingel K, Kowalczuk S, Rasko JEJ, Cavanaugh J, Bröer S (2004) Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup disorder. J Biol Chem 279:24467–24476

    Article  PubMed  Google Scholar 

  • Charizopoulou N, Jansen S, Dorsch M, Stanke F, Dorin JR, Hedrich HJ, Tümmler B (2004) Instability of the insertional mutation Cftr TgH(neoim)Hgu cystic fibrosis mouse model. BMC Genetics 5:6

    Article  PubMed  Google Scholar 

  • Charizopoulou N, Wilke M, Dorsch M, Bot A, Jorna H, Jansen S, Stanke F, Hedrich HJ, de Jounge HR, Tümmler B (2006) Spontaneous rescue from cystic fibrosis in a mouse model. BMC Genetics 7:18

    Article  PubMed  Google Scholar 

  • Chen Z, Fei Y-J, Anderson CMH, Wake KA, Miyauchi S, Huang W, Thwaites DT, Ganapathy V (2003) Structure, function and immunolocalization of a proton-coupled amino acid transporter (hPAT1) in the human intestinal cell line Caco-2. J Physiol 546:349–361

    Article  PubMed  CAS  Google Scholar 

  • Daniel H (2004) Molecular and integrative physiology of intestinal peptide transport. Annu Rev Physiol 66:361–384

    Article  PubMed  CAS  Google Scholar 

  • De Lisle RC, Isom KS, Ziemer D, Cotton CU (2001) Changes in the exocrine pancreas secondary to altered small intestinal function in the CF mouse. Am J Physiol Gastrointest Liver Physiol 281:G899–G906

    PubMed  Google Scholar 

  • Dodge JA, Turck D (2006) Cystic fibrosis: Nutritional consequences and management. Best Prac Res Clin Gastroenterol 20:531–546

    Article  CAS  Google Scholar 

  • Dorin JR, Dickinson P, Alton EWFW, Smith SN, Geddes DM, Stevenson BJ, Kimber WL, Fleming S, Clarke AR, Hooper ML, Anderson L, Beddington RSP, Porteous DJ (1992) Cystic fibrosis in the mouse by targeted insertional mutagenesis. Nature 359:211–215

    Article  PubMed  CAS  Google Scholar 

  • Dorin JR, Stevenson BJ, Fleming S, Alton EWFW, Dickinson P, Porteous DJ (1994) Long-term survival of the exon 10 insertional cystic fibrosis mutant mouse is a consequence of low level residual wild type Cftr gene expression. Mamm genome 5:465–472

    Article  PubMed  CAS  Google Scholar 

  • Franic TV, van Driel IR, Gleeson PA, Giraud AS, Judd LM (2005) Reciprocal changes in trefoil 1 and 2 expression in stomachs of mice with gastric unit hypertrophy and inflammation. J Pathol 207:43–52

    Article  PubMed  CAS  Google Scholar 

  • Gentzsch M, Choudhury A, Chang X, Pagano RE, Riordan JR (2007) Missambled mutant deltaF508 CFTR in the distal secretory pathway alters cellular lipid trafficking. J Cell Sci 120:447–455

    Article  PubMed  CAS  Google Scholar 

  • Grubb BR (1999) Ion transport across the normal and CF neonatal murine intestine. Am J Physiol Gastrointest Liver Physiol 277:G167–G174

    CAS  Google Scholar 

  • Hardcastle J, Harwood MD, Taylor CJ (2003) Small intestinal glucose absorption in cystic fibrosis: a study in human and transgenic deltaF508 cystic fibrosis mouse tissues. J Pharm Parmacol 56:329–338

    Article  Google Scholar 

  • Haston CK, Corey M, Tsui LC (2002) Mapping of genetic factors influencing the weight of cystic fibrosis knockout mice. Mamm genome 13:614–618

    Article  PubMed  CAS  Google Scholar 

  • Haston CK, Tsui LC (2003) Loci of intestinal distress in cystic fibrosis knockout mice. Physiol Genomics 12:79–84

    PubMed  CAS  Google Scholar 

  • Hirayama BA, Loo DDF, Wright EM (1994) Protons drive sugar transport through the Na+/glucose cotransporter (SGLT1). J Biol Chem 269:21407–21410

    PubMed  CAS  Google Scholar 

  • Kellett GL, Brot-Laroche E (2005) Apical GLUT2. Diabetes 54:3056–3062

    Article  PubMed  CAS  Google Scholar 

  • Milla PJ, Kilby A, Rassam UB, Ersser R, Harries JT (1983) Small intestinal absorption of amino acids and a dipeptide in pancreatic insufficiency. Gut 24:818–824

    Article  PubMed  CAS  Google Scholar 

  • O’Loughlin EV, Hunt DM, Gaskin KJ, Stiel D, Bruzuszcak IM, Martin HCO, Bambach C, Smith R (1991) Abnormal epithelial transport in cystic fibrosis jejunum. Am J Physiol Gastrointest Liver Physiol 260:G758–G763

    CAS  Google Scholar 

  • Oulianova N, Falk S, Berteloot A (2001) Two-step mechanism of phlorizin binding to the SGLT1 protein in the kidney. J Membr Biol 179:223–242

    Article  PubMed  CAS  Google Scholar 

  • Sánchez JA, Ho CS, Vaughan DM, Garcia MC, Grange RW, Joho RH (2000) Muscle and motor-skill dysfunction in K+ channel-deficient mouse are due to altered muscle excitability or fiber type but depend on the genetic background. Pflügers Arch 440:34–41

    Article  PubMed  Google Scholar 

  • Scholte BJ, Davidson DJ, Wilke M, de Jounge HR (2004) Animal models of cystic fibrosis. J Cyst Fibr 3:183–190

    Article  CAS  Google Scholar 

  • Sinaasappel M, Stern M, Littlewood J, Wolfe S, Steinkamp G, Heijerman HGM, Robberecht E, Döring G (2002) Nutrition in patients with cystic fibrosis: a European Consensus. J Cyst Fibr 1:51–75

    Article  CAS  Google Scholar 

  • Smith SN, Steel DM, Middleton PG, Munkonge FM, Geddes DM, Caplen NJ, Porteous DJ, Dorin JR, Alton EWFW (1995) Bioelectric characteristics of exon 10 insertional cystic fibrosis mouse: comparison with humans. Am J Physiol 268:C297–C307

    PubMed  CAS  Google Scholar 

  • Vallon V, Grahammer F, Volkl H, Sandu CD, Richter K, Rexhepaj R, Gerlach U, Rong Q, Pfeifer K, Lang F (2005) KCNQ1-dependent transport in renal and gastrointestinal epithelia. Proc Nat Acad Sci USA 102:17864–17869

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (Research Training Group 705). The authors gratefully acknowledge for the animal care to Petra Adomat and Harry Detterming as well as for the excellent technical assistance of M. Burmester, M. Loh and U. Dringenberg in the Ussing chamber experiments. All experiments were approved by the local government as well as by the local Institutional Animal Care and Research Advisory Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Breves.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tóth, B., Leonhard-Marek, S., Hedrich, H.J. et al. Characterisation of electrogenic nutrient absorption in the Cftr TgH(neoim)Hgu mouse model. J Comp Physiol B 178, 705–712 (2008). https://doi.org/10.1007/s00360-008-0259-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-008-0259-7

Keywords

Navigation