Skip to main content
Log in

The intake responses of three species of leaf-nosed Neotropical bats

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Flower-visiting bats encounter nectars that vary in both sugar composition and concentration. Because in the new world, the nectars of bat-pollinated flowers tend to be dominated by hexoses, we predicted that at equicaloric concentrations, bats would ingest higher volumes of hexoses than sucrose-containing nectars. We investigated the intake response of three species of Neotropical bats, Leptonycteris curasoae, Glossophaga soricina and Artibeus jamaicensis, to sugar solutions of varying concentrations (292, 438, 584, 730, 876, and 1,022 mmol L−1) consisting of either sucrose or 1:1 mixtures of glucose and fructose solutions. Bats did not show differences in their intake response to sucrose and 1:1 glucose–fructose solutions, indicating that digestion and absorption in bat intestines are designed under the principle of symmorphosis, in which no step is more limiting than the other. Our results also suggest that, on the basis of energy intake, bats should not prefer hexoses over sucrose. We used a mathematical model that uses the rate of sucrose hydrolysis measured in vitro and the small intestinal volume of bats to predict the rate of nectar intake as a function of sugar concentration. The model was a good predictor of the intake responses of L. curasoae and G. soricina, but not of A. jamaicensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ΔM :

Change in mass

C sf :

Final concentration

V 0 :

Food intake

C s0 :

Initial concentration

K m :

Michaelis–Menten constant

S max :

Rate of hydrolysis

r s :

Sucrose hydrolysis

SI:

Sugar intake

τ:

Transit time

G :

Volume of small intestine

References

  • Anderson-Sprecher R (1994) Model comparisons and R 2. Am Stat 48:113–117

    Article  Google Scholar 

  • Bakken BH, McWorther TJ, Tsahar E, Martínez del Río C (2004). Hummingbirds arrest their kidneys at night: diel variation in glomerular filtration rate in Selasphorus platycercus. J Exp Biol 207:4383–4391

    Article  PubMed  Google Scholar 

  • Baker HG, Baker IS (1983) Floral nectar constituents in relation to pollinator type. In: Jones CE, Little RJ (eds) Handbook of pollinators. New York Scientific and Academic, pp 117–141

  • Baker HG, Baker IS, Hodges A (1998) Sugar composition of nectars and fruits consumed by birds and bats in the tropics and subtropics. Biotropica 30:559–586

    Article  Google Scholar 

  • Bullock SH (1995) Plant reproduction in neotropical dry forest. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forest. Cambridge University Press, Cambridge, pp 277–203

    Google Scholar 

  • Castle KT, Wunder BA (1995) Limits to food intake and fiber utilization in the prairie vole Microtus orchrogaster: effects of food quality and energy need. J Comp Physiol A 164:609–617

    Google Scholar 

  • Collins BG (1981) Nectar intake and water balance for two species of Australian honeyeater, Lichmera indistincta and Acanthorynchus superciliosis. Physiol Zool 54:1–13

    Google Scholar 

  • Cruz-Neto AC, Abe AS (1997) Metabolic rate and thermoregulation in the nectarivorous bat Glossophaga soricina (Chiroptera, Phillostomidae). Rev Brasil Biol 57:203–209

    Google Scholar 

  • Fleming PA, Bakken BH, Lotz CN, Nicolson SW (2004) Concentration and temperature effects on sugar intake and preferences in a sunbird and Hummingbird. Funct Ecol 18:223–232

    Article  Google Scholar 

  • García-Oliva F, Camou A, Mass JM (2002) El clima de la región central de la costa del pacífico mexicano. In: Noguera F, Vega SH, García Aldrete AN, Quesada M (eds) Historia natural de chamela. Universidad Nacional Autónoma de México, México, pp 3–10

    Google Scholar 

  • Hansen CB, Jen KC, Kribs P (1981) Regulation of food intake in monkeys. Physiol Behav 26:479–486

    Article  PubMed  CAS  Google Scholar 

  • Helversen O, Winter Y (2003) Glossophagine bats and their flowers: costs and benefits for plants and pollinators. In: Kunz TH, Fenton MB (eds) Bat ecology. University of Chicago Press, Chicago, pp 346–397

    Google Scholar 

  • Hernandez A, Martínez del Río C (1992) Intestinal disaccharidases in five species of phyllostomid bats. J Comp Physiol B 103:105–111

    CAS  Google Scholar 

  • Herrera LG (1999) Preferences for different sugars in Neotropical nectarivorous and frugivorous bats. J Mammal 80:683–688

    Article  Google Scholar 

  • Herrera LG, Leblanc D, Nassar J (2000) Sugar discrimination and gustatory thresholds in captive-born frugivorous Old World bats. Mammalia 64:135–143

    Article  Google Scholar 

  • Herrera LG, Martínez del Rio C, Braun E, Hobson K (2001) Renal structure in phyllostomid bats: using stable isotopes to explore relationships between diet and morphology. Isotopes Environ Health Stud 37:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hiebert SM, Calder WA III (1983) Sodium, potassium, and chloride in floral nectars: energy-free contributions to refractive index and salt balance. Ecology 64:399–402

    Article  CAS  Google Scholar 

  • Inouye DW, Favre ND, Lanum JA, Levine DM, Meyers JB, Roberts MS, Tsao FC, Wang Y-Y (1980) The effects of non-sugar nectar constituents on estimates of nectar energy content. Ecology 61:992–996

    Article  CAS  Google Scholar 

  • JMP 5.1® (2003) SAS institute, Cary, NC, USA

  • Josens RB, Farina WM, Roces F (1998) Nectar feeding by the ant Camponotus mus: intake rate and crop filling as a function of sucrose concentration. J Insect Physiol 44:579–585

    Article  PubMed  CAS  Google Scholar 

  • Korine C, Speakman J, Arad Z (2004) Reproductive energetics of captive free-ranging Egyptian fruit bats Rossetus aegymtiacus. Ecology 85:220–230

    Article  Google Scholar 

  • Levey DJ, Martínez del Rio C (1999) Test, rejection, and reformulation of a chemical reactor-based model of gut function in a fruit-eating bird. Physiol Biochem Zool 72:369–383

    Article  PubMed  CAS  Google Scholar 

  • López-Calleja MV, Bozinovic F,Martínez del Rio C (1997) Effects of sugar concentration on hummingbird feeding and energy use. Comp Biochem Physiol A 118:1291–1299

    Article  Google Scholar 

  • Lotz C, Martínez del Rio C (2004) The ability of rufous hummingbirds (Selasphorus rufus) to dilute and concentrate urine. J Avian Biol 35:54–62

    Article  Google Scholar 

  • Martínez del Rio C, Schondube JE, McWhorter TJ, Herrera LG (2001) Intake responses in nectar feeding birds: digestive and metabolic causes, osmoregulatory consequences, and coevolutionary effects. Am Zool 41:902–915

    Article  Google Scholar 

  • McWorther TJ, López-Calleja MV (2000) The integration of diet, physiology and ecology of nectar-feeding birds. Rev Chil Hist Nat 73:415–460

    Google Scholar 

  • McWorther TJ, Martínez del Rio C (2000) Does gut function limit hummingbird food intake? Physiol Biochem Zool 73:313–324

    Article  Google Scholar 

  • McWorther TJ, Martínez del Rio C, Pinshow B, Roxburg L (2004) Renal function in Palestine Sunbirds: elimination of excess water does not constrain energy intake. J Exp Biol 23:3391–3398

    Article  Google Scholar 

  • Mirón ML (2005) Efecto de la dieta en el fraccionamiento isotópico de 13C y 15N en el murciélago Glossophaga soricina (Chiroptera: Phillostomidae). Tesis de maestría (Maestría en ciencias biológicas), Facultad de Ciencias, UNAM

  • Mitchell RJ, Paton DC (1990) Effects of nectar volume and concentration on sugar intake rates of Australian honeyeaters (Meliphagidae). Oecologia 83:238–246

    Article  Google Scholar 

  • Montgomery MJ, Baumgardt BR (1965) Regulation of food intake in ruminants. 2. Pelleted rations varying in energy concentration. J Dairy Sci 48:569–577

    Article  PubMed  CAS  Google Scholar 

  • Nicolson SW (2001) Pollination by passerine birds: why are nectars so dilute? Comp Biochem Physiol 4:1–8

    Google Scholar 

  • Nicolson SW, Fleming PA (2003) Nectar as food for birds: the physiological consequences of drinking dilute sugar solutions. Plant Syst Evol 238:139–153

    Google Scholar 

  • Ortega J, Castro-Arellano I (2001) Artibeus jamaicensis. Mammal Species 662:1–9

    Article  Google Scholar 

  • Paton DC, Collins BG (1989) Bills and tongues of nectar-feeding birds: a review of morphology, function and performance, with intercontinental comparisons. Aust J Ecol 14:473–506

    Article  Google Scholar 

  • Pyke GH, Waser NM (1981) The production of dilute nectars by hummingbird and honeyeater flowers. Biotropica 13:260–270

    Article  Google Scholar 

  • Ramírez NP, Herrera GM, Mirón L (2005) Physiological constraint to food ingestion in a New World nectarivorous bat. Physiol Biochem Zool 78:1032–1038

    Article  PubMed  Google Scholar 

  • Roces F, Winter Y, Helversen O (1993) Nectar concentration preference and water balance in a flower visiting bat, Glossophaga soricina antillarum. In: Barthlott W (eds) Animal–plant interactions in tropical environments. Museum Koening, Bonn, pp 159–165

    Google Scholar 

  • Rodriguez-Peña N, Stoner K, Schondube J, Ayala-Berdón J, Martínez del Río C (2007) Effects of sugar composition and concentration on food selection by Leptonycteris curasoae and Glossophaga soricina (Chiroptera: Phyllostomidae: Glossophaginae). J Mammal (in press)

  • Schondube JE, Martínez del Río C (2003) Concentration-dependent sugar preferences in nectar-feeding birds: mechanisms and consequences. Funct Ecol 17:445–453

    Article  Google Scholar 

  • Schondube JE, Herrera LG, Martínez del Río C (2001) Diet and the evolution of digestion and renal function in phyllostomid bats. Zoology 104:59–73

    Article  PubMed  CAS  Google Scholar 

  • Slansky F, Wheeler GS (1992) Caterpillars compensatory feeding response to diluted nutrients leads to toxic allelochemical dose. Entomol Exp Appl 65:171–186

    Article  Google Scholar 

  • Spiegel TA (1973) Caloric regulation of food intake in man. J Comp Physiol Psychol 84:24–37

    Article  PubMed  CAS  Google Scholar 

  • Stuart A, Ord JK (1994) Kendall’s advanced theory of statistics, vol 1. Edward Arnold, New York

    Google Scholar 

  • Studier EH, Wilson DE (1983) Natural urine concentrations and composition in Neotropical bats. Comp Biochem Physiol 75:509–515

    Article  Google Scholar 

  • Thomas DW (1984) Fruit intake and energy budgets of frugivorous bats. Physiol Zool 57:457–467

    Google Scholar 

  • Voight CC, Speakman JR (2007) Nectar-feeding bats fuel their high metabolism directly with exogenous carbohydrates. Funct Ecol 21:913–921

    Article  Google Scholar 

  • Weibel ER (2000) Symmorphosis: on form and function in shaping life. Harvard University Press, Cambridge

    Google Scholar 

  • Winter Y (1998) In vivo measurement of near maximal rates of nutrient absorption in a mammal. Comp Biochem Physiol 119:853–859

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors’ acknowledge support by grants from PAPIIT-UNAM to KES and JES (IN225103–3). Scholarship support to JA was provided by CONACyT (scholarship 189397). We thank C. I. Garcia Leal, C. Chavez, and D. Salazar for valuable assistance in the field, H. Ferreira, G. Sánchez-Montoya, and A. Valencia Garcia for technical assistance, and the Estación de Biología Chamela for logistical support. Bats were captured with permission from the Oficina de Fauna Silvestre, Mexico, to JES (FAUT-0193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge E. Schondube.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayala-Berdon, J., Schondube, J.E., Stoner, K.E. et al. The intake responses of three species of leaf-nosed Neotropical bats. J Comp Physiol B 178, 477–485 (2008). https://doi.org/10.1007/s00360-007-0240-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-007-0240-x

Keywords

Navigation