Skip to main content
Log in

Functional characterisation of UCP1 in the common carp: uncoupling activity in liver mitochondria and cold-induced expression in the brain

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Mammalian uncoupling protein 1 (UCP1) mediates nonshivering thermogenesis in brown adipose tissue. We previously reported on the presence of a UCP1 orthologue in ectothermic fish and observed downregulation of UCP1 gene expression in the liver of the common carp. Neither the function of UCP1, nor the mode of UCP1 activation is known in carp liver mitochondria. Here, we compared the proton conductance at 25°C of liver mitochondria isolated from carp either maintained at 20°C (warm-acclimated, WA) or exposed to 8°C (cold-acclimated, CA) water temperature for 7–10 days. Liver mitochondria from WA carp had higher state four rates of oxygen consumption and greater proton conductance at high membrane potential. Liver mitochondria from WA, but not from CA, carp showed a strong increase in proton conductance when palmitate (or 4-hydroxy-trans-2-nonenal, HNE) was added, and this inducible proton conductance was prevented by addition of GDP. This fatty acid sensitive proton leak is likely due to the expression of UCP1 in the liver of WA carp. The observed biochemical properties of proton leak strongly suggest that carp UCP1 is a functional uncoupling protein with broadly the same activatory and inhibitory characteristics as mammalian UCP1. Significant UCP1 expression was also detected in our previous study in whole brain of the carp. We here observed a twofold increase of UCP1 mRNA in carp brain following cold exposure, suggesting a role of UCP1 in the thermal adaptation of brain metabolism. In situ hybridization located the UCP1 gene expression to the optic tectum responsible for visual system control, the descending trigeminal tract and the solitary tract. Taken together, this study characterises uncoupling protein activity in an ectotherm for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADP:

Adenosine 5′-(trihydrogen diphosphate)

BSA:

Bovine serum albumin

CA:

Cold-acclimated

DEPC:

Diethylpyrocarbonate

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

EGTA:

Ethylene glycol bis (2-aminoethyl ether)-N,N,N′N′-tetraacetic acid

FCCP:

Carbonyl cyanide p-trifluoro-methoxyphenylhydrazone

GDP:

Guanosine 5′-diphosphate

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

PBS:

Phosphate buffered saline

SSC:

Sodium chloride sodium citrate buffer

35S-UTP:

Uridine 5′-[α-35S]thiotriphosphate

TEA:

Triethanolamine

TPMP:

Triphenylmethylphosphonium

Tris–HCl:

(Hydroxymethyl) aminomethane-hydrochloride

WA:

Warm-acclimated

References

  • Bishop T, Brand MD (2000) Processes contributing to metabolic depression in hepatopancreas cells from the snail Helix aspersa. J Exp Biol 203:3603–3612

    PubMed  CAS  Google Scholar 

  • Block BA (1994) Thermogenesis in muscle. Ann Rev Physiol 56:535–577

    Article  CAS  Google Scholar 

  • Brand MD (1995) Measurement of mitochondrial protonmotive force. In: Brown GC (ed) Bioenergetics: a practical approach. IRL Press, Oxford, pp 39–62

    Google Scholar 

  • Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37:755–767

    Article  PubMed  CAS  Google Scholar 

  • Brand MD, Esteves TC (2005) Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab 2:85–93

    Article  PubMed  CAS  Google Scholar 

  • Brookes PS, Buckingham JA, Tenreiro AM, Hulbert AJ, Brand MD (1998) The proton permeability of the inner membrane of liver mitochondria from ectothermic and endothermic vertebrates and from obese rats: correlations with standard metabolic rate and phospholipid fatty acid composition. Comp Biochem Physiol B Biochem Mol Biol 119:325–334

    Article  PubMed  CAS  Google Scholar 

  • Brookes PS, Hulbert AJ, Brand MD (1997) The proton permeability of liposomes made from mitochondrial inner membrane phospholipids: no effect of fatty acid composition. Biochim Biophys Acta 1330:157–164

    Article  PubMed  CAS  Google Scholar 

  • Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  PubMed  CAS  Google Scholar 

  • Canosa LF, Cerda-Reverter JM, Peter RE (2004) Brain mapping of three somatostatin encoding genes in the goldfish. J Comp Neurol 474:43–57

    Article  PubMed  CAS  Google Scholar 

  • Carey FG (1982) A brain heater in the swordfish. Science 216:1327–1329

    Article  PubMed  CAS  Google Scholar 

  • Considine MJ, Goodman M, Echtay KS, Laloi M, Whelan J, Brand MD, Sweetlove LJ (2003) Superoxide stimulates a proton leak in potato mitochondria that is related to the activity of uncoupling protein. J Biol Chem 278:22298–22302

    Article  PubMed  CAS  Google Scholar 

  • Crawshaw LI (1976) Effect of rapid temperature change on mean body temperature and gill ventilation in carp. Am J Physiol 231:837–841

    PubMed  CAS  Google Scholar 

  • Cunningham SA, Wiesinger H, Nicholls DG (1986) Quantification of fatty acid activation of the uncoupling protein in brown adipocytes and mitochondria from the guinea-pig. Eur J Biochem 157:415–420

    Article  PubMed  CAS  Google Scholar 

  • Echtay KS, Esteves TC, Pakay JL, Jekabsons MB, Lambert AJ, Portero-Otin M, Pamplona R, Vidal-Puig AJ, Wang S, Roebuck SJ, Brand MD (2003) A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J 22:4103–4110

    Article  PubMed  CAS  Google Scholar 

  • Echtay KS, Roussel D, St Pierre J, Jekabsons MB, Cadenas S, Stuart JA, Harper JA, Roebuck SJ, Morrison A, Pickering S, Clapham JC, Brand MD (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415:96–99

    Article  PubMed  CAS  Google Scholar 

  • Esteves TC, Parker N, Brand MD (2006) Synergy of fatty acid and reactive alkenal activation of proton conductance through uncoupling protein 1 in mitochondria. Biochem J 395:619–628

    Article  PubMed  CAS  Google Scholar 

  • Garlid KD, Orosz DE, Modriansky M, Vassanelli S, Jezek P (1996) On the mechanism of fatty acid-induced proton transport by mitochondrial uncoupling protein. J Biol Chem 271:2615–2620

    Article  PubMed  CAS  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    Google Scholar 

  • Guderley H (1990) Functional significance of metabolic responses to thermal acclimation in fish muscle. Am J Physiol 259:R245–R252

    PubMed  CAS  Google Scholar 

  • Guderley H (2004) Metabolic responses to low temperature in fish muscle. Biol Rev Camb Philos Soc 79:409–427

    Article  PubMed  Google Scholar 

  • Jastroch M, Withers K, Klingenspor M (2004) Uncoupling protein 2 and 3 in marsupials: identification, phylogeny, and gene expression in response to cold and fasting in Antechinus flavipes. Physiol Genomics 17:130–139

    Article  PubMed  CAS  Google Scholar 

  • Jastroch M, Wuertz S, Kloas W, Klingenspor M (2005) Uncoupling protein 1 in fish uncovers an ancient evolutionary history of mammalian nonshivering thermogenesis. Physiol Genomics 22:150–156

    Article  PubMed  CAS  Google Scholar 

  • Jimenez-Jimenez J, Ledesma A, Zaragoza P, Gonzalez-Barroso MM, Rial E (2006) Fatty acid activation of the uncoupling proteins requires the presence of the central matrix loop from UCP1. Biochim Biophys Acta 1757:1292–1296

    Article  PubMed  CAS  Google Scholar 

  • Kent J, Koban M, Prosser CL (1988) Cold-acclimation-induced protein hypertrophy in channel catfish and green sunfish. J Comp Physiol [B] 158:185–198

    CAS  Google Scholar 

  • Klingenberg M, Echtay KS (2001) Uncoupling proteins: the issues from a biochemist point of view. Biochim Biophys Acta 1504:128–143

    Article  PubMed  CAS  Google Scholar 

  • Klingenberg M, Winkler E (1985) The reconstituted isolated uncoupling protein is a membrane potential driven H+ translocator. EMBO J 4:3087–3092

    PubMed  CAS  Google Scholar 

  • Locke RM, Rial E, Nicholls DG (1982) The acute regulation of mitochondrial proton conductance in cells and mitochondria from the brown fat of cold-adapted and warm-adapted guinea pigs. Eur J Biochem 129:381–387

    Article  PubMed  CAS  Google Scholar 

  • Lowell BB (1998) Adaptive thermogenesis: turning on the heat. Curr Biol 8:R517–520

    Article  PubMed  CAS  Google Scholar 

  • Lucassen M, Koschnick N, Eckerle LG, Portner HO (2006) Mitochondrial mechanisms of cold adaptation in cod (Gadus morhua L. ) populations from different climatic zones. J Exp Biol 209:2462–2471

    Article  PubMed  CAS  Google Scholar 

  • Mark FC, Lucassen M, Portner HO (2006) Thermal sensitivity of uncoupling protein expression in polar and temperate fish. Comp Biochem Physiol D—Genomics Proteomics 1:365–374

    Article  Google Scholar 

  • Montgomery JC, Macdonald JA (1990) Effects of temperature on nervous system: implications for behavioral performance. Am J Physiol 259:R191–R196

    PubMed  CAS  Google Scholar 

  • Nicholls DG, Locke RM (1984) Thermogenic mechanisms in brown fat. Physiol Rev 64:1–64

    PubMed  CAS  Google Scholar 

  • Porter RK, Hulbert AJ, Brand MD (1996) Allometry of mitochondrial proton leak: Influence of membrane surface area and fatty acid composition. Am J Physiol 40:R1550–R1560

    Google Scholar 

  • Reynafarje B, Costa LE, Lehninger AL (1985) O2 solubility in aqueous media determined by a kinetic method. Anal Biochem 145:406–418

    Article  PubMed  CAS  Google Scholar 

  • Rial E, Aguirregoitia E, Jimenez-Jimenez J, Ledesma A (2004) Alkylsulfonates activate the uncoupling protein UCP1: implications for the transport mechanism. Biochim Biophys Acta 1608:122–130

    Article  PubMed  CAS  Google Scholar 

  • Richieri GV, Anel A, Kleinfeld AM (1993) Interactions of long-chain fatty acids and albumin: determination of free fatty acid levels using the fluorescent probe ADIFAB. Biochemistry 32:7574–7580

    Article  PubMed  CAS  Google Scholar 

  • Shabalina IG, Jacobsson A, Cannon B, Nedergaard J (2004) Native UCP1 displays simple competitive kinetics between the regulators purine nucleotides and fatty acids. J Biol Chem 279:38236–38248

    Article  PubMed  CAS  Google Scholar 

  • Smith AM, Ratcliffe RG, Sweetlove LJ (2004) Activation and function of mitochondrial uncoupling protein in plants. J Biol Chem 279:51944–51952

    Article  PubMed  CAS  Google Scholar 

  • St Pierre J, Brand MD, Boutilier RG (2000) Mitochondria as ATP consumers: cellular treason in anoxia. Proc Nat Acad Sci USA 97:8670–8674

    Article  PubMed  CAS  Google Scholar 

  • Talbot DA, Duchamp C, Rey B, Hanuise N, Rouanet JL, Sibille B, Brand MD (2004) Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins. J Physiol 558:123–135

    Article  PubMed  CAS  Google Scholar 

  • Tiku PE, Gracey AY, Macartney AI, Beynon RJ, Cossins AR (1996) Cold-induced expression of delta 9-desaturase in carp by transcriptional and posttranslational mechanisms. Science 271:815–818

    Article  PubMed  CAS  Google Scholar 

  • Trueman RJ, Tiku PE, Caddick MX, Cossins AR (2000) Thermal thresholds of lipid restructuring and delta(9)-desaturase expression in the liver of carp (Cyprinus carpio L ). J Exp Biol 203:641–650

    PubMed  CAS  Google Scholar 

  • van den Burg EH, Peeters RR, Verhoye M, Meek J, Flik G, Van der LA (2005) Brain responses to ambient temperature fluctuations in fish: reduction of blood volume and initiation of a whole-body stress response. J Neurophysiol 93:2849–2855

    Article  PubMed  Google Scholar 

  • Wodtke E (1974) Effects of acclimation temperature on the oxidative metabolism of the eel (Anguilla anguilla L. ). J Comp Physiol [B] 91:309–332

    Article  CAS  Google Scholar 

  • Wodtke E (1978) Lipid adaptation in liver mitochondrial membranes of carp acclimated to different environmental temperatures: phospholipid composition, fatty acid pattern and cholesterol content. Biochim Biophys Acta 529:280–291

    PubMed  CAS  Google Scholar 

  • Wodtke E (1981) Temperature adaptation of biological membranes Compensation of the molar activity of cytochrome c oxidase in the mitochondrial energy-transducing membrane during thermal acclimation of the carp (Cyprinus carpio L). Biochim Biophys Acta 640:710–720

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Helen Boysen, Ian Goldstone and Sigrid Stöhr for excellent technical assistance, and the Department of Zoology, Cambridge University for providing us with their animal facilities. This study was funded by the Medical Research Council, the DAAD and the DFG (Grant KL 973/7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Jastroch.

Additional information

Communicated by G. Heldmaier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

360_2007_171_MOESM1_ESM.pdf

Suppl. Photograph Photograph of carp either acclimated to 20°C or 8°C. The body cavity was opened to illustrate altered morphology of the liver due to cold exposure (PDF 85 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jastroch, M., Buckingham, J.A., Helwig, M. et al. Functional characterisation of UCP1 in the common carp: uncoupling activity in liver mitochondria and cold-induced expression in the brain. J Comp Physiol B 177, 743–752 (2007). https://doi.org/10.1007/s00360-007-0171-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-007-0171-6

Keywords

Navigation