Skip to main content
Log in

Digestive performance in five Mediterranean lizard species: effects of temperature and insularity

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Temperature sensitivity of digestive processes has important ramifications for digestive performance in ectothermic vertebrates. We conducted a comparative analysis of temperature effects on digestive processes [gut passage times (GPTs) and apparent digestive efficiencies (ADEs)] in five lacertid lizards occurring in insular (Podarcis erhardii, P. gaigeae), and mainland (P. muralis, P. peloponnesiaca, Lacerta graeca) Mediterranean environments. GPTs were negatively correlated to temperature with mainland taxa having 10–20% longer GPTs than island taxa. In contrast to previous studies that estimate ADEs using bomb calorimetry, we compare ADEs by analyzing discrete efficiencies for lipids, sugars and proteins at three temperature regimes (20, 25, and 30°C); each of these categories produces different results. ADEs for lipids and sugars showed a monotonic increase with temperature whereas ADEs for proteins decreased with temperature. Island taxa had consistently higher ADEs than their mainland counterparts for lipids and for proteins but not for sugars. They are characterized by superior energy acquisition abilities despite significantly shorter GPTs. Their increased digestive performance relative to the mainland species appears to allow them to maximize energy acquisition in unproductive island environments where food availability is spatially and seasonally clustered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamopoulou C, Pafilis P, Valakos ED (1999) Diet composition of Podarcis milensis, P. gaigeae and P. erhardii (Sauria: Lacertidae) during summer. Bonn Zool Beitr 48:275–282

    Google Scholar 

  • Alexis MN, Papaparaskeva-Papoutsoglou E (1986) Aminotransferase activity in the liver and white muscle of Mugil capito fed diets containing different levels of protein and carbohydrate. Comp Biochem Physiol B 83:245–249

    Article  PubMed  CAS  Google Scholar 

  • Andrews RM, Asato T. (1977) Energy and utilization of a tropical lizard. Comp Biochem Physiol 58A:57–62

    Article  Google Scholar 

  • Avery RA (1971) Estimates of food consumption by the lizard, Lacerta vivipara Jaquin. J Anim Ecol 40: 351–365

    Article  Google Scholar 

  • Barton NWH, Houston DC (1993) A comparison of digestive efficiency in birds of prey. Ibis 135:363–371

    Google Scholar 

  • Barton NWH, Houston DC (1994) Morphological adaptation of the digestive tract in relation to feeding ecology of raptors. J Zool 232:133–150

    Article  Google Scholar 

  • Beaupre SJ, Dunham AE, Overall KL (1993) The effects of consumption rate and temperature on apparent digestibility coefficient, urate production, metabolizable energy coefficient and passage time in canyon lizards (Sceleporus merriami) from two populations. Funct Ecol 7:273–280

    Article  Google Scholar 

  • Bedford GS, Christian KA (2000) Digestive efficiency in some Australian pythons. Copeia 2000(3):829–834

  • Berne RM, Levy MN (1996) Principles of physiology. Mosby-Year Book Inc, New York

    Google Scholar 

  • Böhme W (1986) Lacerta graeca (Bedriaga, 1886)—Taygetos-Eidechse, Griechische Spitzkopfeidechse. In: Böhme W (ed) Handbuch der Reptilien und Amphibien Europas, Echsen (Sauria) II. AULA-Verlag, Wiesbaden, pp 255–264

    Google Scholar 

  • Brashares J, Garland T Jr, Arcese P (2000) The ecology, behavior and phylogeny of the African antelope. Behav Ecol 11:452–463

    Article  Google Scholar 

  • Bringsoe H (1986) Podarcis peloponnesiaca (Bibron and Bory, 1833)—Peloponnes-Eidechse. In: Böhme W (ed) Handbuch der Reptilien und Amphibien Europas, Echsen (Sauria) II. AULA-Verlag, Wiesbaden, pp 209–230

    Google Scholar 

  • Carretero MA (1997) Digestive size and diet in Lacertidae: a preliminary analysis. In: Böhme W, Bischoff W, Ziegler T (eds) Herpetologia bonnensis. SHE, Bonn, pp 43–49

    Google Scholar 

  • Chen XJ, Xu FX, Ji X (2003) Influence of body temperature on food assimilation and locomotor performance in white-striped grass lizards Takydromus wolteri (Lacertidae). J Thermal Biol 28:385–391

    Article  Google Scholar 

  • Chondropoulos B, Fraguedakis S, Tsekoura N, Tryfonopoulos G, Pafilis P, Valakos ED (2000) Contribution to the study of the genetic variability and taxonomic relationships among five lizard species of the family Lacertidae from Greece. Belg J Zool 130:37–41

    Google Scholar 

  • Christian KA (1986) Physiological consequences of nighttimes temperature for tropical, herbivorous lizard (Cyclura nubila). Can J Zool 64:836–840

    Article  Google Scholar 

  • Dearing MD (1993) An alimentary specialization for herbivory in the tropical whiptail lizard Cnemidophorus murinus. J Herpetol 27:111–114

    Article  Google Scholar 

  • da Diefenbach CO (1975a) Gastric function in Caiman crocodiles (Crocodylia: Reptilia)—I. Rate of gastric digestion and gastric motility as a function of temperature. Comp Biochem Physiol A 51:259–265

    Article  CAS  Google Scholar 

  • da Diefenbach CO (1975b) Gastric function in Caiman crocodiles (Crocodylia: Reptilia)—II. Effects of temperature on pH and proteolysis. Comp Biochem Physiol A 51:267–274

    Article  CAS  Google Scholar 

  • Du WG, Yan SJ, Ji X (2000) Selected body temperature, thermal tolerance and thermal dependence of food assimilation and locomotor performance in adult blue-tailed skinks, Eumeces elegans. J Thermal Biol 25:197–202

    Article  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers BA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Garland T Jr, Dickerman AW, Janis CM, Jones JA (1993) Phylogenetic analysis of covariance by computer simulation. Syst Biol 42:265–292

    Article  Google Scholar 

  • Garland T Jr, Midford PE, Jones JA, Dickerman AW, Diaz-Uriarte R (2002) PDAP: phenotypic diversity analysis programs. Version 6.0. Available at http://www.biology.ucr.edu/people/faculty/Garland/PDAP.html

  • Gruber U (1986a) Podarcis gaigeae (Werner, 1930)—Skyros-Mauereidechse. In: Böhme W (ed) Handbuch der Reptilien und Amphibien Europas, Echsen (Sauria) II. AULA-Verlag, Wiesbaden, pp 65–70

    Google Scholar 

  • Gruber U (1986b) Podarcis erhardii (Bedriaga, 1876)—Ägäische Mauereidechse. In: Böhme W (ed) Handbuch der Reptilien und Amphibien Europas, Echsen (Sauria) II. AULA-Verlag, Wiesbaden, pp 25–49

    Google Scholar 

  • Gruschwitz M, Böhme W (1986) Podarcis muralis (Laurenti, 1768)—Mauereidechse. In: Böhme W (ed) Handbuch der Reptilien und Amphibien Europas, Echsen (Sauria) II. AULA-Verlag, Wiesbaden, pp 155–208

    Google Scholar 

  • Iverson JB (1980) Colic modifications in iguanid lizards. J Morphol 163:79–93

    Article  Google Scholar 

  • Harlow JJ, Hillman SS, Hoffman M (1976) The effect of temperature on digestive efficiency in herbivorous lizard Diplosaurus dorsalis. J Comp Physiol 111:1–6

    Google Scholar 

  • Harris DJ, Arnold EN, Thomas RH (1998) Relationships of lacertid lizards (Reptilia: Lacertidae) estimated from mitochondrial DNA sequences and morphology. Proc R Soc Lond 265:1939–1948

    Article  CAS  Google Scholar 

  • Harwood RH (1979) The effect of temperature on the digestive efficiency of three species of lizards, Cnemidophorus tigris, Gerrhonotus multicarinatus, and Sceleporus occidentalis. Comp Biochem Physiol A 63:417–433

    Article  Google Scholar 

  • Huey RB (1982) Temperature, physiology, and the ecology of reptiles. In: Gans C, Pough FH (eds) Biology of the reptilia, vol 12. Academic, New York, pp 25–91

  • Hume ID (1989) Optimal digestive strategies in mammalian herbivores. Physiol Zool 62:1145–1163

    Google Scholar 

  • Hume ID (2005) Concepts of digestive efficiency. In: Starck JM, Wang T (eds) Physiological and ecological adaptations to feeding in vertebrates. Science Publishers, Enfield, pp 43–58

  • Hungate RE (1966) The rumen and its microbes. Academic, New York

    Google Scholar 

  • Ji X, Zhou WH, He GB, Gu HQ (1993) Food intake assimilation efficiency and growth of juvenile lizards, Takydromus septentrionalis. Comp Biochem Physiol 105A:283–285

    Article  Google Scholar 

  • Ji X, Du WG, Sun PY (1996) Body temperature, thermal tolerance and influence of temperature on sprint speed and food assimilation in adult grass lizards, Takydromus septentrionalis. J Therm Biol 21:155–161

    Article  Google Scholar 

  • Johnson RN, Lillywhite HB (1979) Digestive efficiency of the omnivorous lizard Klauberina riversiana. Copeia 1979:431–437

    Article  Google Scholar 

  • Karasov WH, Diamond JM (1985) Digestive adaptations for fueling the cost of endothermy. Science 228:202–204

    Article  PubMed  CAS  Google Scholar 

  • Layne E (1957) Spectrophotometric and turbidimetric methods for measuring proteins. Methods Enzymol 10:447–455

    Article  Google Scholar 

  • Maragou P, Valakos ED, Giannopoulos Z, Stavropoulou A, Chondropoulos B (1996) Spring aspect of feeding ecology in Podarcis peloponnesiaca (Bibron & Bory, 1833). Herpetozoa 9:105–110

    Google Scholar 

  • Maragou P, Valakos ED, Chondropoulos BP (1997) Comparative ecology of two sympatric lizard species, Lacerta graeca and Podarcis peloponnesiaca endemic to Peloponnisos (Greece). In: Böhme W, Bischoff W, Ziegler T (eds) Herpetologia bonnensis. Societas Herpetologica Europea, Bonn, pp 265–271

    Google Scholar 

  • McConnachie S, Alexander GJ (2004) The effect of temperature on digestive efficiency, gut passage time and appetite in an ambush foraging lizard, Cordylus melanotus melanotus. J Comp Physiol B 174:99–105

    Article  PubMed  CAS  Google Scholar 

  • McKinon W, Alexander GJ (1999) Is temperature independence of digestive efficiency an experimental artifact in lizards? A test using the common flat lizard (Platysaurus intermedius). Copeia 1999:299–303

    Article  Google Scholar 

  • Neville A (1975) Biology of arthropod cuticle. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Pafilis P (2003) Adaptations of lacertids based on their thermal biology, metabolic rate and phylogenetic history. Ph.D. thesis, University of Athens, Greece

  • Pafilis P, Valakos ED (2004) Temperature effect on the digestive efficiency of the main organic compounds in two Mediterranean lizards. In: Arianoutsou M, Papanastasis I (eds) Proceedings 10th MEDECOS conference, electronic edn. Mill Press, Rotterdam

  • Perez-Mellado V, Corti C (1993) Dietary adaptations and herbivory in lacertid lizards of the genus Podarcis from western Mediterranean islands (Reptilia: Sauria). Bonner Zool Beitr 44:193–220

    Google Scholar 

  • Poulakakis N, Lymberakis P, Antoniou A, Chalkia D, Zouros E, Mylonas M, Valakos ED (2003) Molecular phylogeny and biogeography of the wall-lizard Podarcis erhardii (Squamata: Lacertidae). Mol Phylogen Evol 28:38–46

    Article  CAS  Google Scholar 

  • Poulakakis N, Lymberakis P, Valakos E, Pafilis P, Zouros E, Mylonas M (2005) Phylogeography of Balkan wall lizard (Podarcis taurica) and its relatives inferred from mitochondrial DNA sequences. Mol Ecol 14:2433–2443

    Article  PubMed  CAS  Google Scholar 

  • Ruppert RM (1980) Comparative assimilation efficiencies of two lizards. Comp Biochem Physiol A 67:491–496

    Google Scholar 

  • Scoczylas R (1978) Physiology of the digestive tract. In: Gans C, Pough FH (eds) Biology of the reptilia, vol 8. Academic, New York, pp 589–717

  • Simandle ET, Espinoza RE, Nussear KE, Tracy CR (2001) Lizards, lipids, and dietary links to animal function. Physiol Biochem Zool 74:625–640

    Article  PubMed  CAS  Google Scholar 

  • SPSS Inc. (1989–2002) SPSS 11.0 Mac OS X Version. Chicago, Illinois

  • Starck JM, Beese K (2001) Structural flexibility of the intestine of Burmese python in response to feeding. J Exp Biol 204:325–335

    PubMed  CAS  Google Scholar 

  • Starck JM, Beese K (2002) Structural flexibility of the small intestine and liver of garter snakes in response to feeding. J Exp Biol 205:1377–1388

    PubMed  Google Scholar 

  • Stevenson RD, Peterson CR, Tsuji JS (1985) The thermal dependence of locomotion, tongue flicking, digestion, and oxygen consumption in the wandering garter snake. Physiol Zool 58:46–57

    Google Scholar 

  • Taddei A (1951) Contributo allo studio del canale alimentare in Lacerta. Boll Zool 18:291–294

    Google Scholar 

  • Toledo LF, Abe AS, Andrade DV (2002) Temperature and meal size effects on the postprandial metabolism and energetics in a boid snake. Physiol Biochem Zool 76:240–246

    Article  Google Scholar 

  • Troyer K (1987) Small differences in daytime body temperature affect digestion of natural food in a herbivorous lizard (Iguana iguana). Comp Biochem Physiol A 87(3):623–626

    Article  Google Scholar 

  • Valakos ED, Adamopoulou C, Maragou P, Mylonas M (1997) The food of Podarcis milensis and Podarcis erhardii in the insular ecosystems of the Aegean. In: Böhme W, Bischoff W, Ziegler T (eds) Herpetologia bonnensis. Societas Herpetologica Europea, Bonn, pp 373–381

    Google Scholar 

  • Van Damme R, Bauwens D, Verheyen RF (1991) The thermal dependence of feeding behavior, food consumption and gut-passage time in the lizard Lacerta vivipara (Jaquin). Funct Ecol 5:507–517

    Article  Google Scholar 

  • Van Marken Lichtenbelt W (1992) Digestion in an ectothermic herbivore, the green iguana (Iguana iguana): effect of food composition and body temperature. Physiol Zool 65:649–673

    Google Scholar 

  • Waldschmidt SR, Jones SM, Porter WP (1986) The effect of body temperature and feeding regime on activity, passage time, and digestive coefficient in the lizard Uta stansburiana. Physiol Zool 59:376–383

    Google Scholar 

  • Wang T, Zaar M, Arvedsen S, Vedel-Smith C, Overgaard J (2003) Effects on the metabolic response to feeding in Python molurus. Comp Biochem Physiol A 133:519–527

    Google Scholar 

  • Witz WB, Lawrence JM (1993) Nutrient absorption efficiencies of the lizard Cnemidophorus sexlineatus (Sauria: Teiidae). Comp Biochem Physiol A 105:151–155

    Article  Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

  • Zhang YP, Ji X (2004) The thermal dependence of food assimilation and locomotor performance in southern grass lizards, Takydromus sexlineatus (Lacertidae). J Therm Biol 29:45–43

    Article  CAS  Google Scholar 

  • Zimmerman LC, Tracy CR (1989) Interactions between the environment and ectothermy and herbivory in reptiles. Physiol Zool 62:374–409

    Google Scholar 

Download references

Acknowledgments

The present study was supported by grants from PYTHAGORAS II project of the Greek Ministry of Education and the European Union. We would also like to acknowledge the support of the program for Modern Greek at the University of Michigan. All experimental procedures are in full compliance with Greek national law (Presidential Degree 67/81) on the scientific use and protection of wildlife. Three anonymous reviewers provided insightful comments that greatly improved this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Valakos.

Additional information

Communicated by G. Heldmaier

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pafilis, P., Foufopoulos, J., Poulakakis, N. et al. Digestive performance in five Mediterranean lizard species: effects of temperature and insularity. J Comp Physiol B 177, 49–60 (2007). https://doi.org/10.1007/s00360-006-0108-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-006-0108-5

Keywords

Navigation