Skip to main content
Log in

Physiological properties of the gut lumen of terrestrial isopods (Isopoda: Oniscidea): adaptive to digesting lignocellulose?

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Since any given trait of an organism is considered to represent either an adaptation to the environment or a phylogenetic constraint, most physiological gut characteristics should be adaptive in terms of optimizing digestion and utilization of the respective food source. Among the Crustacea, the taxon Oniscidea (Isopoda) is the only suborder that includes, and essentially consists of, species inhabiting terrestrial environments, feeding on food sources different from those of most other Crustacea (i.e., terrestrial leaf litter). Microelectrodes were used to assay physiological characteristics of the gut lumen from representatives of four families of terrestrial isopods: Trichoniscus pusillus (Trichoniscidae), Oniscus asellus (Oniscidae), Porcellio scaber (Porcellionidae), and Trachelipus rathkii (Trachelipodidae). Microsensor measurements of oxygen pressure (Clark-type oxygen microelectrodes) revealed that O2-consuming processes inside the gut lumen created steep radial oxygen gradients. Although all guts were oxic in the periphery, the radial center of the posterior hindgut was micro-oxic or even anoxic in the adults of the larger species. The entire gut lumen of all examined species was strongly oxidizing (Pt microelectrodes; apparent redox potential, Eh: +600–700 mV). Such conditions would allow for the coexistence of aerobic and anaerobic microorganisms, with both oxidative and fermentative activities contributing to digestion. Although bacterial O2 consumption was also observed in the midgut glands (hepatopancreas), they remained entirely oxic, probably owing to their large surface-to-volume ratio and high oxygen fluxes across the hepatopancreatic epithelium into the gland lumen. Measurements with pH microelectrodes (LIX-type) showed a slight pH gradient from acidic conditions in the anterior hindgut to neutral conditions in the posterior hindgut of O. asellus, P. scaber and T. rathkii. By contrast, the pH in the hindgut lumen of T. pusillus was almost constant. We discuss to what extent these physiological characteristics may be adaptive to the digestion of terrestrial food sources that are rich in lignocellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Appel HM (1993) Phenolics in ecological interactions: the importance of oxidation. J Chem Ecol 19:1521–1552

    Google Scholar 

  • Berenbaum M (1980) Adaptive significance of midgut pH in larval Lepidoptera. Am Nat 115:138–146

    Google Scholar 

  • Beyer R (1964) Faunistisch-Ökologische Untersuchungen an Landisopoden in Mitteldeutschland. Zool Jb Syst Ökol 91:341–402

    Google Scholar 

  • Bignell DE (1984) The arthropod gut as an environment for microorganisms. In: Anderson JM, Rayner ADM, Walton DWH (eds) Invertebrate–microbial interactions. Cambridge University Press, Cambridge, pp 205–227

    Google Scholar 

  • Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487

    Google Scholar 

  • Brune A (1998) Microbial degradation of aromatic compounds: aerobic versus anaerobic processes. Mitt Dtsch Bodenkdl Ges 87:65–78

    Google Scholar 

  • Brune A, Friedrich M (2000) Microecology of the termite gut: structure and function on a microscale. Curr Opin Microbiol 3:263–269

    Google Scholar 

  • Brune A, Emerson D, Breznak JA (1995a) The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl Env Microbiol 61:2681–2687

    Google Scholar 

  • Brune A, Miambi E, Breznak JA (1995b) Roles of oxygen and the intestinal microflora in the metabolism of lignin-derived phenylpropanoids and other monoaromatic compounds by termites. Appl Env Microbiol 61:2688–2695

    Google Scholar 

  • Coughtrey PJ, Martin MH, Chard J, Shales SW (1980) Micro-organisms and metal retention in the woodlouse Oniscus asellus. Soil Biol Biochem 12:23–27

    Article  CAS  Google Scholar 

  • Douglas AE (1995) The ecology of symbiotic micro-organisms. Adv Ecol Res 26:69–103

    Google Scholar 

  • Dow JAT (1984) Extremely high pH in biological systems: a model fro carbonate transport. Am J Physiol 246:633–636

    Google Scholar 

  • Dow JAT (1992) pH gradients in lepidopteran midgut. J Exp Biol 172:355–375

    CAS  PubMed  Google Scholar 

  • Drobne D (1995) Bacteria adherent to the hindgut of terrestrial isopods. Acta Microbiol Immunol Hung 42:45–52

    Google Scholar 

  • Ebert A, Brune A (1997) Hydrogen concentration profiles at the oxic-anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl Environ Microbiol 63:4039–4046

    Google Scholar 

  • Griffiths BS, Wood S (1985) Microorganisms associated with the hindgut of Oniscus asellus (Crustacea, Isopoda). Pedobiologia 28:377–381

    Google Scholar 

  • Gunnarsson T, Tunlid A (1986) Recycling of fecal pellets in isopods: microorganisms and nitrogen compounds as potential food for Oniscus asellus. Soil Biol Biochem 18:595–600

    Google Scholar 

  • Hames CAC, Hopkin SP (1989) The structure and function of the digestive system of terrestrial isopods. J Zool 217:599–627

    Google Scholar 

  • Hartenstein R (1964) Feeding, digestion, glycogen, and the environmental conditions of the digestive system in Oniscus asellus. J Insect Physiol 10:611–621

    Google Scholar 

  • Hassall M, Jennings JB (1975) Adaptive features of gut structure and digestive physiology in the terrestrial isopod Philoscia muscorum (Scopoli) 1763. Biol Bull 149:348–364

    Google Scholar 

  • Jensen K, Revsbech NP, Nielsen LP (1993) Microscale distribution of nitrification activity in sediment determined with a shielded microsensor for nitrate. Appl Environ Microbiol 59:3287–3296

    Google Scholar 

  • Kane MD (1997) Microbial fermentation in insect guts. In: Mackie RI, White BA (eds) Gastrointestinal Microbiology, vol 1. Chapman and Hall, New York, pp 231–265

    Google Scholar 

  • Kappler A, Brune A (2002) Dynamics of redox potential and changes in redox state of iron and humic acids during gut passage in soil-feeding termites (Cubitermes spp.). Soil Biol Biochem 34:221–227

    Google Scholar 

  • Kautz G, Zimmer M, Topp W (2000) Responses of the parthenogenetic isopod, Trichoniscus pusillus, to changes in food quality. Pedobiologia 44:75–85

    Google Scholar 

  • Kautz G, Zimmer M, Topp W (2002) Does Porcellio scaber (Isopoda: Oniscidea) gain from coprophagy? Soil Biol Biochem 34:1253–1259

    Google Scholar 

  • Kozlovskaja LS, Striganova BR (1977) Food, digestion and assimilation in desert woodlice and their relations to the soil microflora. Ecol Bull 25:240–245

    Google Scholar 

  • Lagarrigue JG (1969) Composition ionique de l‘hemolymphe des Oniscoides. Bull Soc Zool Fr 94:137–146

    Google Scholar 

  • Ljungdahl LG, Eriksson K-E (1985) Ecology of microbial cellulose degradation. Adv Microb Ecol 8:237–299

    CAS  Google Scholar 

  • Martin MM (1984) The role of ingested enzymes in the digestive processes of insects. In: Anderson JM, Rayner ADM, Walton DWH (eds) Invertebrate-microbial interactions. Cambridge University Press, Cambridge, pp 155–172

    Google Scholar 

  • Martin JS, Martin MM (1983) Tannin assays in ecological studies: precipitation of Ribulose-1, 5-bisphosphate carboxylaswe/oxygenase by tannic acid, quebracho, and oak foliage extracts. J Chem Ecol 9:285–294

    Google Scholar 

  • Nicholls AG (1931) Studies on Ligia oceanica - II: The processes of feeding, digestion and absorption, with a description of the structure of the foregut. J Mar Assoc UK 17:675–705

    Google Scholar 

  • Revsbech NP (1989) An oxygen microelectrode with a guard cathode. Limnol Oceanogr 34:472–476

    Google Scholar 

  • Revsbech NP, Jørgensen BB (1986) Microelectrodes: their use in microbial ecology. Adv Microb Ecol 9:293–352

    Google Scholar 

  • Reyes VG, Tiedje JM (1976) Ecology of the gut microbiota of Tracheoniscus rathkei (Crustacea, Isopoda). Pedobiologia 16:67–74

    Google Scholar 

  • Schmitt-Wagner D, Brune A (1999) Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4490–4496

    Google Scholar 

  • Schultz JC, Lechowicz MJ (1986) Host plant, larval age and feeding behavior influence midgut pH in the Gypsy Moth (Lymantria dispar L). Oecologia 71:133–137

    Google Scholar 

  • Slaytor M (1992) Cellulose digestion in termites and cockroaches: what role do symbionts play? Comp Biochem Physiol A 103:775–784

    Google Scholar 

  • Ullrich B, Storch V, Schairer H (1991) Bacteria on the food, in the intestine and on the faeces of the woodlouse Oniscus asellus (Crustacea, Isopoda). Pedobiologia 34:41–51

    Google Scholar 

  • Wang Y, Stingl U, Anton-Erxleben F, Zimmer M, Brune A (2004a) ‘Candidatus Hepatincola porcellionum’ gen. nov., sp. nov., a new, stalk-forming lineage of Rickettsiales colonizing the midgut glands of a terrestrial isopod. Arch Microbiol 181:299–304

    Google Scholar 

  • Wang Y, Stingl U, Anton-Erxleben F, Geisler S, Brune A, Zimmer M (2004b) ‘Candidatus Hepatoplasma crinochetorum’, a new, stalk-forming lineage of Mollicutes colonizing the midgut glands of a terrestrial isopod. Appl Environ Microbiol 70:6166–6172

    Google Scholar 

  • Warburg MR, Rosenberg M (1989) Ultracytochemical identification of Na+, K+ -ATPase activity in the isopodan hindgut epithelium. J Crust Biol 9:525–528

    Google Scholar 

  • Wood S, Griffiths BS (1988) Bacteria associated with the hepatopancreas of the woodlice Oniscus asellus and Porcellio scaber (Crustacea, Isopoda). Pedobiologia 31:89–94

    Google Scholar 

  • Wright JC, O’Donnell MJ, Sazgar S (1997) Haemolymph osmoregulation and the fate of sodium and chloride during dehydration in terrestrial isopods. J Insect Physiol 43:795–807

    Google Scholar 

  • Ziegler A, Scholz FHE (1997) The ionic hemolymph composition of the terrestrial isopod Porcellio scaber Latr. during molt. J Comp Physiol B 167:536–542

    Google Scholar 

  • Zimmer M (1997) Surfactants in the gut fluids of Porcellio scaber (Isopoda: Oniscidea), and their interactions with phenolics. J Insect Physiol 43:1009–1014

    Google Scholar 

  • Zimmer M (1999) The fate and effects of ingested hydrolyzable tannins in Porcellio scaber. J Chem Ecol 25:611–628

    Google Scholar 

  • Zimmer M (2002) Nutrition in terrestrial isopods (Isopoda: Oniscidea): an evolutionary-ecological approach. Biol Rev 77:455–493

    Google Scholar 

  • Zimmer M, Topp W (1997) Homeostatic responses in the gut of Porcellio scaber (Isopoda: Oniscidea) optimize litter degradation. J Comp Physiol B 167:582–285

    Google Scholar 

  • Zimmer M, Topp W (1998a) Microorganisms and cellulose digestion in the gut of the woodlouse Porcellio scaber. J Chem Ecol 24:1397–1408

    Google Scholar 

  • Zimmer M, Topp W (1998b) Nutritional biology of terrestrial isopods (Isopoda: Oniscidea): copper revisited. Israel J Zool 44:453–462

    Google Scholar 

  • Zimmer M, Danko JP, Pennings SC, Danford AR, Ziegler A, Uglow RF, Carefoot TH (2001) Hepatopancreatic endosymbionts in coastal isopods (Crustacea: Isopoda), and their contribution to digestion. Mar Biol 138:955–963

    Google Scholar 

  • Zimmer M, Danko JP, Pennings SC, Danford AR, Carefoot TH, Ziegler A, Uglow RF (2002) Cellulose digestion and phenol oxidation in coastal isopods (Crustacea: Isopoda). Mar Biol 140:1207–1213

    Google Scholar 

Download references

Acknowledgements

The experiments described herein comply with the current laws of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Zimmer.

Additional information

Communicated by G. Heldmaier

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmer, M., Brune, A. Physiological properties of the gut lumen of terrestrial isopods (Isopoda: Oniscidea): adaptive to digesting lignocellulose?. J Comp Physiol B 175, 275–283 (2005). https://doi.org/10.1007/s00360-005-0482-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-005-0482-4

Keywords

Navigation