Skip to main content
Log in

Defences against ammonia toxicity in tropical air-breathing fishes exposed to high concentrations of environmental ammonia: a review

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

In the tropics, air-breathing fishes can be exposed to environmental ammonia when stranded in puddles of water during the dry season, during a stay inside a burrow, or after agricultural fertilization. At low concentrations of environmental ammonia, NH3 excretion is impeded, as in aerial exposure, leading to the accumulation of endogenous ammonia. At high concentrations of environmental ammonia, which results in a reversed NH3 partial pressure gradient (ΔPNH3), there is retention of endogenous ammonia and uptake of exogenous ammonia. In this review, several tropical air-breathing fishes (giant mudskipper, African catfish, oriental weatherloach, swamp eel, four-eyed sleeper, abehaze and slender African lungfish), which can tolerate high environmental ammonia exposure, are used as examples to demonstrate how eight different adaptations can be involved in defence against ammonia toxicity. Four of these adaptations deal with ammonia toxicity at branchial and/or epithelial surfaces: (1) active excretion of NH4+; (2) lowering of environmental pH; (3) low NH3 permeability of epithelial surfaces; and (4) volatilization of NH3, while another four adaptations ameliorate ammonia toxicity at the cellular and subcellular levels: (5) high tolerance of ammonia at the cellular and subcellular levels; (6) reduction in ammonia production; (7) glutamine synthesis; and (8) urea synthesis. The responses of tropical air-breathing fishes to high environmental ammonia are determined apparently by behavioural adaptations and the nature of their natural environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CPS :

Carbamoyl phosphate synthetase

FAA :

Free amino acids

GDH :

Glutamate dehydrogenase

GS :

Glutamine synthetase

HEA :

High concentrations of environmental ammonia

α-KG :

α-ketoglutarate

N :

Nitrogen

NHE :

Na+/H+ exchanger

OUC :

Ornithine-urea cycle

ΔP NH3 :

NH3 Partial pressure gradient

pH env :

Environmental pH

TEP :

Transepithelial potential

References

  • Anderson PM (2001) Urea and glutamine synthesis: Environmental influences on nitrogen excretion. In: Wright PA, Anderson PM (eds) Fish physiology, vol 20. Nitrogen excretion. Academic Press, New York, pp 239–277

  • Anderson PM, Broderius MA, Fong KC, Tsui KNT, Chew SF, Ip YK (2002) Glutamine synthetase expression in liver, muscle, stomach and intestine of Bostrichyths sinensis in response to exposure to a high exogenous ammonia concentration. J Exp Biol 205:2053–2065

    CAS  PubMed  Google Scholar 

  • Arillo A, Margiocco C, Melodia F, Mensi P, Schenone G (1981) Ammonia toxicity mechanisms in fish: studies on rainbow trout (Salmo gairdneri Rich). Ecotoxicol Environ Saf 5:316–325

    CAS  PubMed  Google Scholar 

  • Avella M, Bornancin M (1989) A new analysis of ammonia and sodium transport through the gills of the freshwater rainbow trout (Salmo gairdneri). J Exp Biol 142:155–175

    Google Scholar 

  • Binstock L, Lecar H (1969) Ammonium ion currents in the squid giant axon. J Gen Physiol 53:342–361

    Article  CAS  PubMed  Google Scholar 

  • Brusilow SW (2002) Reviews in molecular medicine—hyperammonemic encephalopathy. Medicine 81:240–249

    Article  PubMed  Google Scholar 

  • Campbell JW (1973) Nitrogen excretion. In: Prosser CL (ed) Comparative animal physiology, 3rd edn. Saunders, Philadelphia, pp 279–316

  • Chang A, Hammond TG, Sun TT, Zeidel ML (1994) Permeability properties of the mammalian bladder apical membrane. Am J Physiol 267:1483–1492

    Google Scholar 

  • Chew SF, Jin Y, Ip YK (2001) The loach Misgurnus anguillicaudatus reduces amino acid catabolism and accumulates alanine and glutamine during aerial exposure. Physiol Biochem Zool 74:226–237

    Google Scholar 

  • Chew SF, Hong LN, Wilson JM, Randall DJ, Ip YK (2003a) Alkaline environmental pH has no effect on the excretion of ammonia in the mudskipper Periophthalmodon schlosseri but inhibits ammonia excretion in the related species Boleophthalmus boddaerti. Physiol Biochem Zool 76:204–214

    Article  CAS  PubMed  Google Scholar 

  • Chew SF, Ong TF, Ho L, Tam WL, Loong AM, Hiong KC, Wong WP, Ip YK (2003b) Urea synthesis in the African lungfish Protopterus dolloi—hepatic carbamoyl phosphate synthetase III and glutamine synthetase are up-regulated by 6 days of aerial exposure. J Exp Biol 206:3615–3624

    Article  PubMed  Google Scholar 

  • Chew SF, Wong MY, Tam WL, Ip YK (2003c) The snakehead Channa asiatica accumulates alanine during aerial exposure, but is incapable of sustaining locomotory activities on land through partial amino acid catabolism. J Exp Biol 206:693–704

    Article  CAS  PubMed  Google Scholar 

  • Chew SF, Ho L, Ong TF, Wong WP, Ip YK (2004a) The African lungfish, Protopterus dolloi, detoxifies ammonia to urea during environmental ammonia exposure. Physiol Biochem Zool (in press)

  • Chew SF, Wilson JM, Ip YK, Randall DJ (2004b) Nitrogen excretion and defense against ammonia toxicity. In: Val A, Almedia-Val V, Randall DJ (eds) Fish physiology, vol 23. The physiology of tropical fishes. Academic Press, New York (in press)

  • Clayton DA (1993) Mudskippers. Oceanogr Mar Biol Annu Rev 31:507–577

    Google Scholar 

  • Cooper JL, Plum F (1987) Biochemistry and physiology of brain ammonia. Physiol Rev 67:440–519

    CAS  PubMed  Google Scholar 

  • Daoust PY, Ferguson HW (1984) The pathology of chronic ammonia toxicity in rainbow trout, Salmo gairdneri Richardson. J Fish Dis 7:199–205

    CAS  Google Scholar 

  • Davenport J, Sayer MDJ (1986) Ammonia and urea excretion in the amphibious teleost Blennius pholis (L.) in seawater and in air. Comp Biochem Physiol 84A:189–194

    Article  CAS  Google Scholar 

  • Davidson A (1975) Fish and fish dishes of Laos. Imprimerie Nationale, Vientiane, p 202

  • Deare FM, Ahmad N, Ferguson TU (1995) Downward movement of nitrate and ammonium nitrogen in a flatland ultisol. Fertilizer Res 42:175–184

    CAS  Google Scholar 

  • Eddy FB, Bamford OS, Maloiy GMO (1980) Sodium and chloride balance in the African catfish Clarias mossambicus. Comp Biochem Physiol 66A:637–641

    Article  CAS  Google Scholar 

  • Evans DH, Cameron JN (1986) Gill ammonia transport. J Exp Zool 239:17–23

    CAS  Google Scholar 

  • Felipo V, Butterworth RF (2002) Neurobiology of ammonia. Progr Neurobiol 67:259–279

    Article  CAS  PubMed  Google Scholar 

  • Felipo V, Kosenko E, Minana MD, Marcaida G, Grisolia S (1994) Molecular mechanism of acute ammonia toxicity and of its prevention by l-carnitine. In: Felipo V, Grisola S (eds) Hepatic encephalopathy, hyperammonemia and ammonia toxicity. Plenum, New York, pp 65–77

  • Ferguson HW, Morrison D, Ostland VE, Lumsden J, Byrne P (1992) Responses of mucus-producing cells in gill disease of rainbow trout (Oncorhynchus mykiss). J Comp Pathol 106:255–265

    CAS  PubMed  Google Scholar 

  • Freney JR, Denmead OT, Watanabe I, Craswell ET (1981) Ammonia and nitrous oxide losses following applications of ammonium sulfate to flooded rice. Aust J Agric Res 32:37–45

    CAS  Google Scholar 

  • Frick NT, Wright PA (2002) Nitrogen metabolism and excretion in the mangrove killifish Rivulus marmoratus II. Significant ammonia volatilization in a teleost during air-exposure. J Exp Biol 205:91–100

    CAS  PubMed  Google Scholar 

  • Gonzalez RJ, McDonald DG (1994) The relationship between oxygen uptake and ion loss in fish from diverse habitats. J Exp Biol 190:95–108

    PubMed  Google Scholar 

  • Goss GG, Wood CM (1990) Na + and Cl uptake kinetics, diffusive effluxes and acidic equivalent fluxes across the gills of rainbow trout I. Response to environmental hyperoxia. J Exp Biol 152:521–547

    CAS  Google Scholar 

  • Graham JB (1997) Air-breathing fishes. Academic Press, San Diego, 299 pp

  • Hazel JR, Landrey SR (1988) The course of thermal adaptation in plasma membranes of trout kidney. I. Headgroup composition. Am J Physiol 255:R622-R627

    CAS  PubMed  Google Scholar 

  • Hazel JR. Williams EE (1990) The role of alteration in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Progr Lipid Res 29:167–227

    Article  CAS  Google Scholar 

  • Hermenegildo C, Monfor CP, Felipo V (2000) Activation of N-methyl-d-aspartate receptors in rate brain in vivo following acute ammonia intoxication: characterization by in vivo brain microdialysis. Hepatology 31:709–715

    Article  CAS  PubMed  Google Scholar 

  • Ip YK, Lee CY, Chew SF, Low WP, Peng K W (1993) Differences in the responses of two mudskippers to terrestrial exposure. Zool Sci 10:511–519

    Google Scholar 

  • Ip YK, Chew SF, Randall D J (2001a) Ammonia toxicity, tolerance, and excretion. In: Wright PA, Anderson PM (eds) Fish physiology, vol 20. Nitrogen excretion. Academic Press, San Diego pp 109–148

  • Ip YK, Chew SF, Leong IWA, Jin Y, Wu RSS (2001b) The sleeper Bostrichthys sinensis (teleost) stores glutamine and reduces ammonia production during aerial exposure. J Comp Physiol B 171:357–367

    Article  CAS  PubMed  Google Scholar 

  • Ip YK, Randall DJ, Kok TKT, Bazarghi C, Wright PA, Ballantyne JS, Wilson JM, Chew SF (2003a) The mudskipper Periophthalmodon schlosseri facilitates active NH4+ excretion by increasing acid excretion and decreasing NH3 permeability in the skin. J Exp Biol 207:787–801

    Article  Google Scholar 

  • Ip YK, Tam WL, Wong WP, Loong AI, Hiong KC, Ballantyne JS, Chew SF (2003b) A comparison of the effects of environmental ammonia exposure on the Asian freshwater stingray Himantura signifier and the Amazonian freshwater stingray Potamotrygon motoro. J Exp Biol 206:3625–3633

    Article  PubMed  Google Scholar 

  • Ip YK, Subaidah RM, Liew PC, Loong AM, Hiong KC, Wong WP, Chew SF (2004a) The African catfish Clarias gariepinus does not detoxify ammonia to urea or amino acids during ammonia loading but is capable of excreting ammonia against an inwardly driven ammonia concentration gradient. Physiol Biochem Zool 77:242–254

    Article  CAS  PubMed  Google Scholar 

  • Ip YK, Tay ASL, Lee KH, Chew SF (2004b) Strategies adopted by the swamp eel Monopterus albus to survive in high concentrations of environmental ammonia. Physiol Biochem Zool (in press)

  • Ip YK, Chew SF, Randall DJ (2004c) Five tropical fishes, six different strategies to defend against ammonia toxicity on land. Physiol Biochem Zool (in press)

  • Iwata K (1988) Nitrogen metabolism in the mudskipper, Periophthalmus cantonensis: changes in free amino acids and related compounds in carious tissues under conditions of ammonia loading with reference to its high ammonia tolerance. Comp Biochem Physiol 91A:499–508

    Article  CAS  Google Scholar 

  • Iwata K, Deguichi M (1995) Metabolic fate and distribution of 15N-ammonia in an ammonotelic amphibious fish, Periophthalmus modestus, following immersion in 15N-ammonium sulphate: a long-term experiment. Zool Sci 12:175–184

    CAS  Google Scholar 

  • Iwata K, Kajimura M, Sakamoto T (2000) Functional ureogenesis in the gobiid fish Mugilogobius abei. J Exp Biol 203:3703–3715

    CAS  PubMed  Google Scholar 

  • Iwata K, Kakuta M, Ikeda G, Kimoto S, Wada N (1981) Nitrogen metabolism in the mudskipper, Periophthalmus cantonensis: a role of free amino acids in detoxification of ammonia produced during its terrestrial life. Comp Biochem Physiol 68A:589–596

    Article  CAS  Google Scholar 

  • Jow LY, Chew SF, Lim CB, Anderson PM, Ip YK (1999) The marble goby Oxyeleotris marmoratus activated hepatic glutamine synthetase and detoxifies ammonia to glutamine during air exposure. J Exp Biol 202:237–245

    CAS  PubMed  Google Scholar 

  • Kikeri D, Sun A, Zeidel ML, Hebert SC (1989) Cell membranes impermeable to NH3. Nature 339:478–480

    Article  CAS  PubMed  Google Scholar 

  • Kok WK, Lim CB, Lam TJ, Ip YK (1998) The mudskipper Periophthalmodon schlosseri respires more efficiently on land than in water and vice versa for Boleophthalmus boddaerti. J Exp Zool 280:86–90

    Article  Google Scholar 

  • Korsgaard B, Mommsen TP, Wright PA (1995) Urea excretion in teleostean fishes: adaptive relationships to environment, ontogenesis and viviparity. In: Walsh PJ, Wright PA (eds) Nitrogen metabolism and excretion. CRC Press, Boca Raton, pp 259–287

  • Lande MB, Donovan JM, Zeidel ML (1995) The relationship between membrane fluidity and permeabilities to water, solute, ammonia, and protons. J Gen Physiol 106:67–84

    Article  CAS  PubMed  Google Scholar 

  • Levi G, Morisi G, Coletti A, Catanzaro R (1974) Free amino acids in fish brain: normal levels and changes upon exposure to high ammonia concentrations in vivo and upon incubation of brain slices. Comp Biochem Physiol 49A:623–636

    Article  Google Scholar 

  • Liem KE (1987) Functional design of the air ventilation apparatus and overland excursions by teleosts. Fieldiana: Zoology 37:1–29

    Google Scholar 

  • Lim CB, Chew SF, Anderson PM, Ip YK (2001) Mudskippers reduce the rate of protein and amino acid catabolism in response to terrestrial exposure. J Exp Biol 204:1605–1614

    CAS  PubMed  Google Scholar 

  • Low WP, Ip YK, Lane DJW (1990) A comparative study of the gill morphometry in three mudskippers—Periophthalmus chrysospilos, Boleophthalmus boddaerti and Periophthalmodon schlosseri. Zool Sci 7:29–38

    Google Scholar 

  • Low WP, Lane DJW, Ip YK (1988) A comparative study of terrestrial adaptations in three mudskippers—Periophthalmus chrysospilos, Boleophthalmus boddaerti and Periophthalmodon schlosseri. Biol Bull 175:434–438

    Google Scholar 

  • Madara JL (1998) Regulation of the movement of solutes across tight junctions. Annu Rev Physiol 60:143–159

    Article  CAS  PubMed  Google Scholar 

  • Maetz J (1973) Na+/NH4+, Na+/H+ exchanges and NH3 movement across the gill of Carassius auratus. J Exp Biol 58:255–273

    CAS  Google Scholar 

  • Maetz J, Garcia-Romeu F (1964) The mechanisms of sodium and chloride uptake by the gills of a freshwater fish, Carassius auratus. II. Evidence for NH4+/Na+ and HCO3/Cl exchanges. J Gen Physiol 47:1209–1227

    Article  CAS  PubMed  Google Scholar 

  • Marcaggi P, Coles, JA (2001) Ammonium in nervous tissues: transport across cell membranes, fluxes from neurons to glial cells, and role in signaling. Progr Neurobiol.64:157–183

    Google Scholar 

  • McMahon BR, Burggren WW (1987) Respiratory physiology of intestinal air breathing in the teleost fish Misgurnus anguillicaudatus. J Exp Biol 133:371–393

    Google Scholar 

  • Nakhoul NL, Hering-Smith KS, Abdulnour-Nakhoul SM, Hamm LL (2001) Transport of NH3/NH4+ in oocytes expressing aquaporin-1. Am J Physiol 281:F255–F263

    CAS  Google Scholar 

  • Oellermann LK (1995) A comparison of the aquaculture potential of Clarius gariepinus (Burchell, 1922) and its hybrid with Heterobranchus longifilis (Valenciennes, 1840) in southern Africa. PhD Thesis, Rhodes University, Grahamstown, South Africa

  • Peng KW, Chew SF, Lim CB, Kuah SSL, Kok WK, Ip YK (1998) The mudskippers Periophthalmodon schlosseri and Boleophthalmus boddaerti can tolerate environmental NH3 concentrations of 446 and 36 μM, respectively. Fish Physiol Biochem 19:59–69

    Article  CAS  Google Scholar 

  • Poll M (1961) Révision systématique et raciation géographique des Protopteridae de l’Afrique centrale. Ann Mus R Afr Centr, série in-8o, Sci Zool 103:3–50

    Google Scholar 

  • Rainboth WJ (1996) Fishes of the Cambodian Mekong. FAO Species Identification Field Guide for Fishery Purposes. FAO, Rome, p 265

  • Randall DJ, Wilson JM, Peng KW, Kok TWK, Kuah SSL, Chew SF, Lam TJ, Ip YK (1999) The mudskipper, Periophthalmodon schlosseri, actively transports NH4+ against a concentration gradient. Am J Physiol 277:R1562–R1567

    CAS  PubMed  Google Scholar 

  • Randall DJ, Wood CM, Perry SF Bergman H, Maloiy GM, Mommsen TP, Wright PA (1989) Urea excretion as a strategy for survival in a fish living in a very alkaline environment. Nature 337:165–166

    Article  CAS  PubMed  Google Scholar 

  • Rose C (2002) Increased extracellular brain glutamate in acute liver failure: decreased uptake or increased release? Met Brain Dis 17:251–261

    Article  CAS  Google Scholar 

  • Rozemeijer MJC, Plaut, I (1993) Regulation of nitrogen excretion of the amphibious blenniidae Alticus kirki (Guenther, 1868) during emersion and immersion. Comp Biochem Physiol 104A:57–62

    Article  CAS  Google Scholar 

  • Saha N, Ratha BK (1998) Ureogenesis in Indian air-breathing teleosts: adaptation to environmental constraints. Comp Biochem Phsyiol 120A:195–208

    CAS  Google Scholar 

  • Singh SK, Binder HJ, Geibel JP, Boron WF 1995. An apical permeability barrier to NH3/NH4+ in isolated, perfused colonic crypts. Proc Natl Acad Sci USA 92:11573–11577

    Google Scholar 

  • Smart GR (1976) The effect of ammonia exposure on gill structure of the rainbow trout (Salmo gairdneri). J Fish Biol 8:471–475

    Google Scholar 

  • Smart GR (1978) Investigations of the toxic mechanisms of ammonia to fish-gas exchange in rainbow trout (Salmo gairdneri) exposed to acutely lethal concentrations. J Fish Biol 12:93–104

    CAS  Google Scholar 

  • Steward PA (1983) Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 61:1444–1461

    PubMed  Google Scholar 

  • Tay SLA, Chew SF, Ip YK (2003) The swamp eel Monopterus albus reduces endogenous ammonia production and detoxifies ammonia to glutamine during aerial exposure. J Exp Biol 206:2931–3940

    Article  PubMed  Google Scholar 

  • Tsui TKN, Randall DJ, Chew SF, Jin Y, Wilson JM, Ip YK (2002) Accumulation of ammonia in the body and NH3 volatilization from alkaline regions of the body surface during ammonia loading and exposure to air in the weather loach Misgurnus anguillicaudatus. J Exp Biol 205:651–659

    CAS  PubMed  Google Scholar 

  • Twitchen ID, Eddy FB (1994) Effects of ammonia on sodium balance in juvenile rainbow trout Oncorhynchus mykiss Walbaum. Aqua Toxicol 30:27–45

    Article  CAS  Google Scholar 

  • Walsh PJ, Danulat E, Mommsen TP (1990) Variation in urea excretion in the gulf toadfish (Opsanus beta). Mar Biol 106:323–328

    CAS  Google Scholar 

  • Walton MJ, Cowey CB (1977) Aspects of ammoniagenesis in rainbow trout, Salmo gairdneri. Comp Biochem Physiol 57:143–149

    Article  CAS  Google Scholar 

  • Wilkie MP (1997) Mechanisms of ammonia excretion across fish gills. Comp Biochem Physiol 118A:39–50

    Article  CAS  Google Scholar 

  • Wilson JM, Randall DJ, Donowitz M, Vogl AW, Ip YK (2000) Immunolocalization of ion-transport proteins to branchial epithelium mitochondria-rich cells in the mudskipper (Periophthalmodon schlosseri). J Exp Biol 203:2297–2310

    CAS  PubMed  Google Scholar 

  • Wilson JM, Randall DJ, Kok TWK, Vogl WA, IpYK (1999) Fine structure of the gill epithelium of the terrestrial mudskipper, Periophthalmodon schlosseri. Cell Tissue Res 298:345–356

    Article  CAS  PubMed  Google Scholar 

  • Wilson RW, Wright PA, Munger S, Wood CM (1994) Ammonia excretion in freshwater rainbow trout (Oncorhynchus mykiss) and the importance of gill boundary layer acidification: lack of evidence for Na+-NH4+ exchange. J Exp Biol 191:37–58

    CAS  PubMed  Google Scholar 

  • Wright PA, Land MD (1998) Urea production and transport in teleost fishes. Comp Biochem Physiol 119A:47–54

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. K. Ip.

Additional information

Communicated by I.D. Hume

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ip, Y.K., Chew, S.F., Wilson, J.M. et al. Defences against ammonia toxicity in tropical air-breathing fishes exposed to high concentrations of environmental ammonia: a review. J Comp Physiol B 174, 565–575 (2004). https://doi.org/10.1007/s00360-004-0445-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-004-0445-1

Keywords

Navigation