Skip to main content
Log in

Putative phenoloxidases in the tunicate Ciona intestinalis and the origin of the arthropod hemocyanin superfamily

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

In addition to the respiratory copper-containing proteins for which it is named, the arthropod hemocyanin superfamily also includes phenoloxidases and various copperless storage proteins (pseudo-hemocyanins, hexamerins and hexamerin receptors). It had long been assumed that these proteins are restricted to the arthropod phylum. However, in their analysis of the predicted genes in the Ciona intestinalis (Urochordata:Tunicata) genome, Dehal et al. (Science 298:2157–2167) proposed that the sea squirt lacks hemoglobin but uses hemocyanin for oxygen transport. While there are, nevertheless, four hemoglobin genes present in Ciona, we have identified and cloned two cDNA sequences from Ciona that in fact belong to the arthropod hemocyanin superfamily. They encode for proteins of 794 and 775 amino acids, respectively. The amino acids required for oxygen binding and other structural important residues are conserved in these hemocyanin-like proteins. However, phylogenetic analyses and mRNA expression data suggest that the Ciona hemocyanin-like proteins rather act as phenoloxidases, possibly involved in humoral immune response. Nevertheless, the putative Ciona phenoloxidases demonstrate that the hemocyanin superfamily emerged before the Protostomia and Deuterostomia diverged and allow for the first time the unequivocal rooting of the arthropod hemocyanins and related proteins. Phylogenetic analyses using neighbor-joining and Bayesian methods show that the phenoloxidases form the most ancient branch of the arthropod proteins, supporting the idea that respiratory hemocyanins evolved from ancestors with an enzymatic function. The hemocyanins evolved in agreement with the expected phylogeny of the Arthropoda, with the Onychophora diverged first, followed by the Chelicerata and Pancrustacea. The position of the myriapod hemocyanins is not resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EST :

expressed sequence tags

References

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, Gabor GL, Abril JF, Agbayani A, An HJ, Andrews-Pfannkoch C, Baldwin D, Ballew RM, Basu A, Baxendale J, Bayraktaroglu L, Beasley EM, Beeson KY, Benos PV, Berman BP, Bhandari D, Bolshakov S, Borkova D, Botchan MR, Bouck J, et al. (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  • Bago B, Zipfel W, Williams RM, Jun J, Arreola R, Lammers PJ, Pfeffer PE, Shachar-Hill Y (2002) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:108–124

    Article  CAS  PubMed  Google Scholar 

  • Beintema JJ, Stam WT, Hazes B, Smidt MP (1994) Evolution of arthropod hemocyanins and insect storage proteins (hexamerins). Mol Biol Evol 11:493–503

    CAS  PubMed  Google Scholar 

  • Boguski MS, Lowe TM, Tolstoshev CM (1993) dbEST—database for “expressed sequence tags”. Nat Genet 4:332–333

    CAS  PubMed  Google Scholar 

  • Burmester T (1999a) Evolution and function of the insect hexamerins. Eur J Entomol 96:213–225

    CAS  Google Scholar 

  • Burmester T (1999b) Identification, molecular cloning and phylogenetic analysis of a non-respiratory pseudo-hemocyanin of Homarus americanus. J Biol Chem 274:13217–13222

    Article  CAS  PubMed  Google Scholar 

  • Burmester T (2001) Molecular evolution of the arthropod hemocyanin superfamily. Mol Biol Evol 18:184–195

    CAS  PubMed  Google Scholar 

  • Burmester T (2002) Origin and evolution of arthropod hemocyanins and related proteins. J Comp Physiol B 172:95–117

    Article  CAS  PubMed  Google Scholar 

  • Burmester T, Scheller K (1996) Common origin of arthropod tyrosinase, arthropod hemocyanin, insect hexamerin and dipteran arylphorin receptor. J Mol Evol 42:713–728

    Google Scholar 

  • Burmester T, Massey HC, Zakharkin SO, Beneš H (1998) The evolution of hexamerins and the phylogeny of insects. J Mol Evol 47:93–108

    CAS  PubMed  Google Scholar 

  • Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in proteins. In Dayhoff MO (ed) Atlas of protein sequence structure, vol 5, suppl 3. National Biomedical Research Foundation, Washington D.C., pp 345–352

  • Decker H, Tuczek F (2000) Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends Biochem Sci 25:392–397

    Article  CAS  PubMed  Google Scholar 

  • Decker H, Ryan M, Jaenicke E, Terwilliger N (2001) SDS induced phenoloxidase activity of hemocyanins from Limulus polyphemus, Eurypelma californicum and Cancer magister. J Biol Chem 276:17796–17799

    Article  CAS  PubMed  Google Scholar 

  • Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, Harafuji N, Hastings KE, Ho I, Hotta K, Huang W, Kawashima T, Lemaire P, Martinez D, Meinertzhagen IA, Necula S, Nonaka M, Putnam N, Rash S, Saiga H, Satake M, Terry A, Yamada L, Wang HG, Awazu S, Azumi K, Boore J, Branno M, Chin-Bow S, DeSantis R, Doyle S, Francino P, Keys DN, Haga S, Hayashi H, Hino K, Imai KS, Inaba K, Kano S, Kobayashi K, Kobayashi M, Lee BI, Makabe KW, Manohar C, Matassi G, Medina M, Mochizuki Y, Mount S, Morishita T, Miura S, Nakayama A, Nishizaka S, Nomoto H, Ohta F, Oishi K, Rigoutsos I, Sano M, Sasaki A, Sasakura Y, Shoguchi E, Shin-i T, Spagnuolo A, Stainier D, Suzuki MM, Tassy O, Takatori N, Tokuoka M, Yagi K, Yoshizaki F, Wada S, Zhang C, Hyatt PD, Larimer F, Detter C, Doggett N, Glavina T, Hawkins T, Richardson P, Lucas S, Kohara Y, Levine M, Satoh N, Rokhsar DS (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    Article  CAS  PubMed  Google Scholar 

  • Durstewitz G, Terwilliger NB (1997) Developmental changes in hemocyanin expression in the Dungeness crab, Cancer magister. J Biol Chem 272:4347–4350

    Article  CAS  PubMed  Google Scholar 

  • Ebner B, Burmester T, Hankeln T (2003) Globin genes are present in Ciona intestinalis. Mol Biol Evol 20:1526–1536

    Article  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Felsenstein J (2001) PHYLIP (Phylogeny Inference Package) version 3.6alpha2. Distributed by the author. Department of Genetics, University of Washington, Seattle

  • Friedrich M, Tautz D (1995) Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature 376:165–167

    CAS  PubMed  Google Scholar 

  • Frizzo A, Guidolin L, Ballarin L, Sabbadin A (1999) Purification and partial characterisation of phenoloxidase from the colonial ascidian Botryllus schlosseri. Mar Biol 135:483–488

    CAS  Google Scholar 

  • Gaykema WPJ, Hol WGJ, Vereifken JM, Soeter NM, Bak HJ, Beintema JJ (1984) 3.2 Å structure of the copper-containing, oxygen-carrying protein Panulirus interruptus hemocyanin. Nature 309:23–29

    CAS  Google Scholar 

  • Giribet G, Edgecombe GD, Wheeler WC (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413:157–161

    Article  CAS  PubMed  Google Scholar 

  • Hazes B, Magnus KA, Bonaventura C, Bonaventura J, Dauter Z, Kalk KH, Hol WGJ (1993) Crystal structure of deoxygenated Limulus polyphemus subunit II hemocyanin at 2.18 Å resolution: clues for a mechanism for allosteric regulation. Protein Sci 2:597–619

    CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Hughes AL (1999) Evolution of the arthropod prophenoloxidase/hexamerin protein family. Immunogenetics 49:106–114

    Article  CAS  PubMed  Google Scholar 

  • Hwang UW, Friedrich M, Tautz D, Park CJ, Kim W (2001) Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature 413:154–157

    Article  CAS  PubMed  Google Scholar 

  • Jackson AD, Smith VJ, Peddie CM (1993) In vitro phenoloxidase activity in the blood of Ciona intestinalis and other ascidians. Develop Comp Immun 17:97–108

    Article  CAS  Google Scholar 

  • Jaenicke E, Decker H (2003) Tyrosinases from crustaceans form hexamers. Biochem J 371:515–523

    Article  CAS  PubMed  Google Scholar 

  • Jaenicke E, Decker H, Gebauer W, Markl J, Burmester T (1999) Identification, structure and properties of hemocyanins from diplopod Myriapoda. J Biol Chem 274:29071–29074

    Article  CAS  PubMed  Google Scholar 

  • Kawabata T, Yasuhara Y, Ochiai M, Matsuura S, Ashida M (1995) Molecular cloning of insect pro-phenoloxidase: a copper-containing protein homologous to arthropod hemocyanin. Proc Natl Acad Sci USA 92:7774–7778

    CAS  PubMed  Google Scholar 

  • Koopmanschap AB, Lammers JHM, de Kort CAD (1995) The structure of the gene encoding diapause protein 1 of the Colorado potato beetle (Leptinotarsa decemlineata). J Insect Physiol 41:509–518

    Article  CAS  Google Scholar 

  • Kurtz DM Jr (1999) Oxygen-carrying proteins: three solutions to a common problem. Essays Biochem 34:85–100

    CAS  PubMed  Google Scholar 

  • Kusche K, Burmester T (2001) Diplopod hemocyanin sequence and the phylogenetic position of the Myriapoda. Mol Biol Evol 18:1566–1573

    CAS  PubMed  Google Scholar 

  • Kusche K, Ruhberg H, Burmester T (2002) A hemocyanin from the Onychophora and the emergence of respiratory proteins. Proc Natl Acad Sci USA 99:10545–10548

    Article  CAS  PubMed  Google Scholar 

  • Lieb B, Altenhein B, Markl J, Vincent A, van Olden E, van Holde KE, Miller KI (2001) Structures of two molluscan hemocyanin genes: significance for gene evolution. Proc Natl Acad Sci USA 98:4546–4551

    CAS  PubMed  Google Scholar 

  • Linzen B, Soeter NM, Riggs AF, Schneider HJ, Schartau W, Moore MD, Behrens PQ, Nakashima H, Takagi T, Nemoto T, Vereijken JM, Bak HJ, Beintema JJ, Volbeda A, Gaykema WPJ, Hol WGJ (1985) The structure of arthropod hemocyanins. Science 229:519–524

    CAS  PubMed  Google Scholar 

  • Mangum CP, Scott JL, Black REL, Miller KI, van Holde KE (1985) Centipedal hemocyanin: its structure and implication for arthropod phylogeny. Proc Natl Acad Sci USA 82:3721–3725

    CAS  PubMed  Google Scholar 

  • Markl J, Decker H (1992) Molecular structure of the arthropod hemocyanins. Adv Comp Environ Physiol 13:325–376

    CAS  Google Scholar 

  • Memmel NA, Trewitt PM, Grzelak K, Rajaratnam VS, Kumaran AK (1994) Nucleotide sequence, structure and developmental regulation of LHP82, a juvenile hormone-suppressible hexamerin gene from the waxmoth, Galleria mellonella. Insect Biochem Mol Biol 24:133–144

    Article  CAS  PubMed  Google Scholar 

  • Müller G, Ruppert S, Schmid E, Schütz G (1988) Functional analysis of alternatively spliced tyrosinase gene transcripts. EMBO J 7:2723–2730

    PubMed  Google Scholar 

  • Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–36

    CAS  PubMed  Google Scholar 

  • Nagai T, Osaki T, Kawabata Si S (2001) Functional conversion of hemocyanin to phenoloxidase by horseshoe crab antimicrobial peptides. J Biol Chem 276:27166–27170

    CAS  PubMed  Google Scholar 

  • Nicholas KB, Nicholas HB Jr (1997) GeneDoc: Analysis and Visualization of Genetic Variation, http://www.psc.edu/biomed/genedoc/

  • Pearson WR (2000) Flexible sequence similarity searching with the FASTA3 program package. Meth Mol Biol 132:185–219

    CAS  Google Scholar 

  • Regier JC, Shultz JW (2001) A phylogenetic analysis of Myriapoda (Arthropoda) using two nuclear protein-encoding genes. Zool J Linn Soc 132:469–486

    Article  Google Scholar 

  • Rogers JH (1986) Introns between protein domains: selective insertion or frameshifting? Trends Genet 2:223

    Article  CAS  Google Scholar 

  • Sanchez D, Ganfornina MD, Gutierrez G, Bastiani MJ (1998) Molecular characterization and phylogenetic relationship of a protein with oxygen-binding capabilities in the grasshopper embryo. A hemocyanin in insects? Mol Biol Evol 15:415–426

    PubMed  Google Scholar 

  • Smith VJ, Söderhäll K (1991) A comparison of phenoloxidase activity in the blood of marine invertebrates. Develop Comp Immun 15:251–261

    Article  CAS  Google Scholar 

  • Söderhäll K, Cerenius L (1998) Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol 10:23–28

    Article  PubMed  Google Scholar 

  • Strimmer K, von Haeseler A (1996) Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969

    CAS  Google Scholar 

  • Telfer WH, Kunkel JG (1991) The function and evolution of insect storage hexamers. Ann Rev Entomol 36:205–228

    Article  CAS  Google Scholar 

  • Terwilliger NB (1998) Functional adaptations of oxygen-transport proteins. J Exp Biol 201:1085–1098

    CAS  PubMed  Google Scholar 

  • Terwilliger NB, Dangott LJ, Ryan MC (1999) Cryptocyanin, a crustacean molting protein: evolutionary links to arthropod hemocyanin and insect hexamerins. Proc Natl Acad Sci USA 96:2013–2018

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    CAS  PubMed  Google Scholar 

  • Van Gelder CWG, Flurkey WH, Wichers HJ (1997) Sequence and structural features of plant and fungal tyrosinases. Phytochemistry 47:1309–1323

    Google Scholar 

  • Van Holde KE, Miller KI (1995) Hemocyanins. Adv Protein Chem 47:1-81

    PubMed  Google Scholar 

  • Van Holde KE, Miller KI, Decker H (2001) Hemocyanins and invertebrate evolution. J Biol Chem 276:15563–15566

    PubMed  Google Scholar 

  • Vinogradov SN (1985) The structure of invertebrate extracellular hemoglobins (erythrocruorins and chlorocruorins). Comp Biochem Physiol B 82:1–15

    Article  CAS  PubMed  Google Scholar 

  • Voll W, Voit R (1990) Characterization of the gene encoding the hemocyanin subunit e from Eurypelma californicum. Proc Natl Acad Sci USA 87:5312–5316

    CAS  PubMed  Google Scholar 

  • Wada H, Satoh N (1994) Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. Proc Natl Acad Sci USA 91:1801–1804

    PubMed  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank T. Hankeln and B. Ebner for the Ciona cDNA library, K. Kusche and S. Hagner-Holler for their help with the cloning experiments, and J. Markl for continuous support. We also thank J. R. Harris and T. Hankeln for critical reading of the manuscript. This work is supported by the Deutsche Forschungsgemeinschaft (Bu956/3 and Bu956/5). The nucleotide sequences reported in this paper have been deposited at the GenBank/EMBL databases with the accession numbers AJ547813 and AJ547814.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Burmester.

Additional information

Communicated by G. Heldmaier

Rights and permissions

Reprints and permissions

About this article

Cite this article

Immesberger, A., Burmester, T. Putative phenoloxidases in the tunicate Ciona intestinalis and the origin of the arthropod hemocyanin superfamily. J Comp Physiol B 174, 169–180 (2004). https://doi.org/10.1007/s00360-003-0402-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-003-0402-4

Keywords

Navigation