Skip to main content
Log in

Facultative hypothermic responses in an Afrotropical arid-zone passerine, the red-headed finch (Amadina erythrocephala)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

We investigated thermoregulation and facultative hypothermic responses to food deprivation in the red-headed finch (Amadina erythrocephala), a 22-g passerine endemic to the arid regions of southern Africa. We predicted that, like most other passerines investigated, A. erythrocephala exhibits shallow rest-phase hypothermia, but not torpor. We observed significant reductions in rest-phase energy expenditure and body temperature (T b) in response to restricted feeding. The maximum extent of T b reduction (ca. 5 °C) and energy savings (ca. 10%) were consistent with those reported for a number of other passerine species. The lowest T b we observed in a bird able to arouse spontaneously was 34.8 °C. The parameters of facultative hypothermic responses in A. erythrocephala were indicative of shallow rest-phase hypothermia, but not torpor. The limited available data on hypothermic responses in passerines suggest that many species do not possess the capacity for torpor. In passerines, torpor appears to be restricted to a few nectarivores and aerial insectarivores, and may have evolved independently of the torpor observed in non-passerine taxa such as the Trochiliformes and Caprimulgidae. The basal metabolic rate (BMR) of A. erythrocephala was 30–46% lower than predicted by various allometric equations, but was similar to the predicted BMR for a 22-g desert bird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C.
Fig. 2A–D.
Fig. 3.

Similar content being viewed by others

Abbreviations

BMR :

basal metabolic rate

C:

thermal conductance

M b :

body mass

ρT b min :

minimum rest phase body temperature

\(\rho \dot V{\rm{O}}_{\rm{2}} min\) :

minimum rest phase oxygen consumption

T a :

ambient temperature

T b :

body temperature

\(\dot V{\rm{CO}}_{\rm{2}} \) :

carbon dioxide production

\(\dot V{\rm{O}}_{\rm{2}} \) :

oxygen consumption

References

  • Aschoff J, Pohl H (1970) Der Ruheumsatz von Vögeln als Funktion der Tageszeit und der Körpergröße. J Ornithol 111:38–47

    Google Scholar 

  • Bartholomew GA, Howell TR, Cade TJ (1957) Torpidity in the white-throated swift, anna hummingbird, and poor-will. Condor 59:145–155

    Google Scholar 

  • Bartholomew GA, Vleck CM, Bucher TL (1983) Energy metabolism and nocturnal hypothermia in two tropical passerine frugivores, Manacus vitellinus and Pipra mentalis. Physiol Zool 56:370–379

    Google Scholar 

  • Bech C, Abe AS, Steffensen JF, Berger M, Bicudo JEPW (1997) Torpor in three species of Brazilian hummingbirds under semi-natural conditions. Condor 99:780–788

    Google Scholar 

  • Bennett PM, Harvey PH (1987) Active and resting metabolism in birds: allometry, phylogeny and ecology. J Zool (Lond) 213:327–363

    Google Scholar 

  • Biebach H (1977) Reduktion des Energiestoffwechsels und der Körpertemperatur hungernder Amseln (Turdus merula). J Ornithol 118:294–300

    Google Scholar 

  • Brigham RM (1992) Daily torpor in a free-ranging goatsucker, the common poorwill (Phalaenoptilus nuttallii). Physiol Zool 65:457–472

    Google Scholar 

  • Brigham RM, Körtner G, Maddocks TM, Geiser F (2000) Seasonal use of torpor by free-ranging Australian owlet-nightjars (Aegotheles cristatus). Physiol Biochem Zool 73:613–620

    Article  CAS  PubMed  Google Scholar 

  • Bucher TL, Worthington A (1982) Nocturnal hypothermia and oxygen consumption in manakins. Condor 84:327–331

    Google Scholar 

  • Carpenter FL (1974) Torpor in an Andean hummingbird: its ecological significance. Science 183:545–547

    Google Scholar 

  • Chaplin SA (1976) The physiology of hypothermia in the black-capped chickadee (Parus atricapillus). J Comp Physiol B 112:335–344

    Google Scholar 

  • Cheke RA (1971) Temperature rhythms in African montane sunbirds. Ibis 113:500–506

    Google Scholar 

  • Clemens DT (1989) Nocturnal hypothermia in rosy finches. Condor 91:739–741

    Google Scholar 

  • Collins BG, Briffa P (1984) Nocturnal energy expenditure by honeyeaters experiencing food shortage and low environmental temperatures. Comp Biochem Physiol A 78:77–81

    Article  Google Scholar 

  • Dawson WR, Whittow GC (2000) Regulation of body temperature. In: Sturkie PD (ed) Avian physiology. Academic Press, New York

  • Downs CT, Brown M (2002) Nocturnal heterothermy and torpor in the Malachite Sunbird (Nectarinia famosa). Auk 119:251–260

    Google Scholar 

  • Geiser F (1998) Evolution of daily torpor and hibernation in birds and mammals: importance of body size. Clin Exp Pharmacol Physiol 25:736–740

    CAS  PubMed  Google Scholar 

  • Geiser F, Ferguson C (2001) Intraspecific differences in behaviour and physiology: effects of captive breeding on patterns of torpor in feathertail gliders. J Comp Physiol B 171:569–576

    CAS  PubMed  Google Scholar 

  • Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol Zool 68:935–966

    Google Scholar 

  • Geiser F, Holloway JC, Körtner G, Maddocks TA, Turbill C, Brigham RM (2000) Do patterns of torpor differ between free-ranging and captive mammals and birds? In: Heldmaier G, Klingenspor M (eds) Life in the cold: 11th International Hibernation Symposium. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Grossman AF, West GC (1977) Metabolic rate and temperature regulation in winter-acclimatized black-capped chickadees, Parus atricapillus, in interior Alaska. Ornis Scand 8:127–138

    Google Scholar 

  • Haftorn S (1972) Hypothermia of tits in the Arctic winter. Ornis Scand 3:153–166

    Google Scholar 

  • Harrison JA, Allan DG, Underhill LG, Herremans M, Tree AJ, Parker V, Brown CJ (1997) The atlas of southern African birds. Volume 2: Passerines. Birdlife South Africa, Johannesburg

    Google Scholar 

  • Hiebert SM (1990) Energy costs and temporal organization of torpor in the rufous hummingbird (Selasphorus rufus). Physiol Zool 63:1082–1097

    Google Scholar 

  • Hoffmann R, Prinzinger R (1984) Torpor und Nahrungsausnutzung bei 4 Mausvogelarten (Coliiformes). J Ornithol 125:225–237

    Google Scholar 

  • Ketterson ED, King JR (1977) Metabolic rate and behavioral responses to fasting in the white-crowned sparrow (Zonotrichia leucophrys gambelli). Physiol Zool 50:115–129

    Google Scholar 

  • Körtner G, Brigham RM, Geiser F (2000) Winter torpor in a large bird. Nature 407:318

    Google Scholar 

  • Krüger K, Prinzinger R, Schuchmann, KL (1982) Torpor and metabolism in hummingbirds. Comp Biochem Physiol A 73:679–689

    Article  Google Scholar 

  • Lasiewski RC, Dawson WR (1967) A re-examination of the relation between standard metabolic rate and body weight in birds. Condor 69:13–23

    Google Scholar 

  • Lasiewski RC, Weathers WW, Bernstein MH (1967) Physiological responses of the giant hummingbird, Patagona gigas. Comp Biochem Physiol 23:797–813

    CAS  PubMed  Google Scholar 

  • Lovegrove BG, Smith GA (2003) Is "nocturnal hypothermia" a valid physiological concept in small birds?: a study on Bronze Mannikins (Spermestes cucullatus). Ibis (In press)

  • Maclean GL (1993) Roberts' birds of southern Africa. John Voelcker Bird Book Fund, Cape Town

  • Maddocks TA, Geiser F (1997) Energetics, thermoregulation and nocturnal hypothermia in Australian silvereyes. Condor 99:104–112

    Google Scholar 

  • Malan A (1996) The origins of hibernation: a reappraisal. In: Geiser F, Hulbert AJ, Nicol SC (eds) Adaptations to the cold. Tenth International Hibernation Symposium. University of New England Press, Armidale

  • Mayer L, Lustick C, Battersby B (1982) The importance of cavity roosting and hypothermia in the energy balance of the winter acclimatized Carolina chickadee. Int Biometeor 26:231–238

    Google Scholar 

  • McKechnie AE, Lovegrove BG (2000) Heterothermy in mousebirds (Coliiformes): evidence of avian proto-torpor? In: Heldmaier G, Klingenspor M (eds) Life in the cold: 11th International Hibernation Symposium. Springer, Berlin Heidelberg New York

  • McKechnie AE, Lovegrove BG (2001) Heterothermic responses in the speckled mousebird (Colius striatus). J Comp Physiol 171:507–518

    Article  CAS  Google Scholar 

  • McKechnie AE, Lovegrove BG (2002) Avian facultative hypothermic responses: a review. Condor 104:705–724

    Google Scholar 

  • Merola-Zwartjes M (1998) Metabolic rate, temperature regulation, and the energetic implications of roost nests in the bananaquit (Coereba flaveola). Auk 115:780–786

    Google Scholar 

  • Merola-Zwartjes M, Ligon JD (2000) Ecological energetics of the Puerto Rican tody: heterothermy, torpor and intra-island variation. Ecology 81:990–1002

    Google Scholar 

  • Paladino FV (1986) Transient nocturnal hypothermia in white-crowned sparrows. Ornis Scand 17:78–80

    Google Scholar 

  • Prinzinger R, Siedle K (1988) Ontogeny of metabolism, thermoregulation and torpor in the house martin Delichon u. urbica (L.) and its ecological significance. Oecologia 76:307–312

    Google Scholar 

  • Prinzinger R, Preßmar A, Schleucher E (1991) Body temperature in birds. Comp Biochem Physiol A 99:499–506

    Article  Google Scholar 

  • Rautenberg W (1986) Neural control of cold defence mechanisms in the avian thermoregulatory system. In: Heller HC, Musacchia XJ, Wang LCH (eds) Living in the cold: physiological and biochemical adaptations. Elsevier, New York

    Google Scholar 

  • Reinertsen RE (1983) Nocturnal hypothermia and its energetic significance for small birds living in the arctic and subarctic regions. A review. Polar Res 1:269–284

    Google Scholar 

  • Reinertsen RE (1985) Hypothermia in northern passerine birds. In: Heller HC, Musacchia XJ, Wang LCH (eds) Living in the cold: physiological and biochemical adaptations. Elsevier, New York

    Google Scholar 

  • Reinertsen RE (1996) Physiological and ecological aspects of hypothermia. In: Carey C (ed) Avian energetics and nutritional ecology. Chapman and Hall, New York

  • Reinertsen RE, Haftorn S (1983) Nocturnal hypothermia and metabolism in the Willow Tit Parus montanus at 63°N. J Comp Physiol 151:109–118

    Google Scholar 

  • Reinertsen RE, Haftorn S (1986) Different metabolic strategies of northern birds for nocturnal survival. J Comp Physiol 156:655–663

    Google Scholar 

  • Reynolds PS, Lee RM (1996) Phylogenetic analysis of avian energetics: passerines and non-passerines do not differ. Am Nat 147:735–759

    Article  Google Scholar 

  • Schleucher E (2001) Heterothermia in pigeons and doves reduces energetic costs. J Therm Biol 26:287–293

    Article  Google Scholar 

  • Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds: a study in molecular evolution. Yale University Press, New Haven

    Google Scholar 

  • Song X, Körtner G, Geiser F (1997) Thermal relations of metabolic rate reduction in a hibernating marsupial. Am J Physiol 273: R2097–R2104

    CAS  PubMed  Google Scholar 

  • Steen J (1958) Climatic adaptation in small northern birds. Ecology 39:625–629

    Google Scholar 

  • Tieleman BI, Williams JB (2000) The adjustment of avian metabolic rates and water fluxes to desert environments. Physiol Biochem Zool 73:461–479

    Article  CAS  PubMed  Google Scholar 

  • Waite TA (1991) Nocturnal hypothermia in gray jays Perisoreus canadensis wintering in interior Alaska. Ornis Scand 22:107–110

    Google Scholar 

  • Walsberg GE, Wolf BO (1995) Variation in the respirometry quotient of birds and implications for indirect calorimetry using measurements of carbon dioxide production. J Exp Biol 198:213–219

    PubMed  Google Scholar 

  • White FN, Bartholomew GA, Howell TR (1975) The thermal significance of the nest of the Sociable Weaver Philetairus socius: winter observations. Ibis 117:171–179

    Google Scholar 

  • Withers PC (1977) Measurement of\(\dot V{\rm{O}}_{\rm{2}} /\dot V{\rm{CO}}_{\rm{2}} \), and evaporative water loss with a flow-through mask. J Appl Physiol 42:120–123

    CAS  PubMed  Google Scholar 

  • Withers PC (1992) Comparative animal physiology. Saunders College Publishing, Fort Worth

  • Yeager DP, Ultsch GR (1989) Physiological regulation and conformation: a BASIC program for the determination of critical points. Physiol Zool 62:888–907

    Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, New Jersey

Download references

Acknowledgements

We gratefully acknowledge the contribution made by De Beers Consolidated Mining, who granted permission for red-headed finches to be trapped on Benfontein. We also thank Rita Covas and her assistants for their hospitality while staying at Benfontein, and for help in trapping the finches. This study was funded by National Research Foundation and University of Natal Research Fund grants to BGL. The experiments performed in this study were approved by the University of Natal Animal Ethics Sub-committee and comply with current South African laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. McKechnie.

Additional information

Communicated by L.C.-H. Wang

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKechnie, A.E., Lovegrove, B.G. Facultative hypothermic responses in an Afrotropical arid-zone passerine, the red-headed finch (Amadina erythrocephala). J Comp Physiol B 173, 339–346 (2003). https://doi.org/10.1007/s00360-003-0341-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-003-0341-0

Keywords

Navigation